735 research outputs found
Clustering in Deep (Submillimeter) Surveys
Hughes & Gaztanaga (2001, see article in these proceedings) have presented
realistic simulations to address key issues confronting existing and
forthcoming submm surveys. An important aspect illustrated by the simulations
is the effect induced on the counts by the sampling variance of the large-scale
galaxy clustering. We find factors of up to 2-4 variation (from the mean) in
the extracted counts from deep surveys identical in area (6 sqr arcmin) to the
SCUBA surveys of the Hubble Deep Fields (HDF). Here we present a recipe to
model the expected degree of clustering as a function of sample area and
redshift.Comment: 5 pages, 1 figure, UMass/INAOE conference proceedings on `Deep
millimeter surveys', eds. J. Lowenthal and D. Hughes, World Scientifi
The Power Spectrum, Bias Evolution, and the Spatial Three-Point Correlation Function
We calculate perturbatively the normalized spatial skewness, , and full
three-point correlation function (3PCF), , induced by gravitational
instability of Gaussian primordial fluctuations for a biased tracer-mass
distribution in flat and open cold-dark-matter (CDM) models. We take into
account the dependence on the shape and evolution of the CDM power spectrum,
and allow the bias to be nonlinear and/or evolving in time, using an extension
of Fry's (1996) bias-evolution model. We derive a scale-dependent,
leading-order correction to the standard perturbative expression for in
the case of nonlinear biasing, as defined for the unsmoothed galaxy and
dark-matter fields, and find that this correction becomes large when probing
positive effective power-spectrum indices. This term implies that the inferred
nonlinear-bias parameter, as usually defined in terms of the smoothed density
fields, might depend on the chosen smoothing scale. In general, we find that
the dependence of on the biasing scheme can substantially outweigh that
on the adopted cosmology. We demonstrate that the normalized 3PCF, , is an
ill-behaved quantity, and instead investigate , the variance-normalized
3PCF. The configuration dependence of shows similarly strong
sensitivities to the bias scheme as , but also exhibits significant
dependence on the form of the CDM power spectrum. Though the degeneracy of
with respect to the cosmological parameters and constant linear- and
nonlinear-bias parameters can be broken by the full configuration dependence of
, neither statistic can distinguish well between evolving and non-evolving
bias scenarios. We show that this can be resolved, in principle, by considering
the redshift dependence of .Comment: 41 pages, including 12 Figures. To appear in The Astrophysical
Journal, Vol. 521, #
Constraints on the Accuracy of Photometric Redshifts Derived from BLAST and Herschel/SPIRE Sub-mm Surveys
More than 150 galaxies have been detected in blank-field millimetre and
sub-millimetre surveys. However the redshift distribution of sub-mm galaxies
remains uncertain due to the difficulty in identifying their optical-IR
counterparts, and subsequently obtaining their spectroscopic emission-line
redshifts. In this paper we discuss results from a Monte-Carlo analysis of the
accuracy with which one can determine redshifts from photometric measurements
at sub-millimetre-FIR wavelengths. The analysis takes into account the
dispersion in colours introduced by including galaxies with a distribution of
SEDs, and by including photometric and absolute calibration errors associated
with real observations. We present examples of the probability distribution of
redshifts for individual galaxies detected in the future BLAST and
Herschel/SPIRE surveys. We show that the combination of BLAST and 850um
observations constrain the photometric redshifts with sufficient accuracy to
pursue a program of spectroscopic follow-up with the 100m GBT.Comment: 3 pages, 5 figures, in 2K1BC symposium "Experimental Cosmology at
Millimetre Wavelengths", ed. M. de Petris and M. Gervasi, AIP, in pres
The Angular Three-Point Correlation Function in the Quasilinear Regime
We calculate the normalized angular three-point correlation function (3PCF),
, as well as the normalized angular skewness, , assuming the
small-angle approximation, for a biased mass distribution in flat and open
cold-dark-matter (CDM) models with Gaussian initial conditions. The
leading-order perturbative results incorporate the explicit dependence on the
cosmological parameters, the shape of the CDM transfer function, the linear
evolution of the power spectrum, the form of redshift distribution function,
and linear and nonlinear biasing, which may be evolving. Results are presented
for different redshift distributions, including that appropriate for the APM
Galaxy Survey, as well as for a survey with a mean redshift of (such as the VLA FIRST Survey). Qualitatively, many of the results found for
and are similar to those obtained in a related treatment of the
spatial skewness and 3PCF (Buchalter & Kamionkowski 1999), such as a
leading-order correction to the standard result for in the case of
nonlinear bias (as defined for unsmoothed density fields), and the sensitivity
of the configuration dependence of to both cosmological and biasing models.
We show that since angular CFs are sensitive to clustering over a range of
redshifts, the various evolutionary dependences included in our predictions
imply that measurements of in a deep survey might better discriminate
between models with different histories, such as evolving vs. non-evolving
bias, that can have similar spatial CFs at low redshift. Our calculations
employ a derived equation---valid for open, closed, and flat models---for
obtaining the angular bispectrum from the spatial bispectrum in the small-angle
approximation.Comment: 45 pages, including 11 Figures, submitted to the Astrophysical
Journa
Statistical Tests for CHDM and \LambdaCDM Cosmologies
We apply several statistical estimators to high-resolution N-body simulations
of two currently viable cosmological models: a mixed dark matter model, having
contributed by two massive neutrinos (C+2\nuDM), and a Cold
Dark Matter model with Cosmological Constant (\LambdaCDM) with
and h=0.7. Our aim is to compare simulated galaxy samples with the
Perseus-Pisces redshift survey (PPS). We consider the n-point correlation
functions (n=2-4), the N-count probability functions P_N, including the void
probability function P_0, and the underdensity probability function U_\epsilon
(where \epsilon fixes the underdensity threshold in percentage of the average).
We find that P_0 (for which PPS and CfA2 data agree) and P_1 distinguish
efficiently between the models, while U_\epsilon is only marginally
discriminatory. On the contrary, the reduced skewness and kurtosis are,
respectively, S_3\simeq 2.2 and S_4\simeq 6-7 in all cases, quite independent
of the scale, in agreement with hierarchical scaling predictions and estimates
based on redshift surveys. Among our results, we emphasize the remarkable
agreement between PPS data and C+2\nuDM in all the tests performed. In
contrast, the above \LambdaCDM model has serious difficulties in reproducing
observational data if galaxies and matter overdensities are related in a simple
way.Comment: 12 pages, 10 figures, LaTeX (aaspp4 macro), in press on ApJ, Vol.
479, April 199
Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment?
We use measurements of the projected galaxy correlation function w_p and
galaxy void statistics to test whether the galaxy content of halos of fixed
mass is systematically different in low density environments. We present new
measurements of the void probability function (VPF) and underdensity
probability function (UPF) from Data Release Four of the Sloan Digital Sky
Survey, as well as new measurements of the VPF from the full data release of
the Two-Degree Field Galaxy Redshift Survey. We compare these measurements to
predictions calculated from models of the Halo Occupation Distribution (HOD)
that are constrained to match both w_p and the space density of galaxies. The
standard implementation of the HOD assumes that galaxy occupation depends on
halo mass only, and is independent of local environment. For luminosity-defined
samples, we find that the standard HOD prediction is a good match to the
observations, and the data exclude models in which galaxy formation efficiency
is reduced in low-density environments. More remarkably, we find that the void
statistics of red and blue galaxies (at L ~ 0.4L_*) are perfectly predicted by
standard HOD models matched to the correlation function of these samples,
ruling out "assembly bias" models in which galaxy color is correlated with
large-scale environment at fixed halo mass. We conclude that the luminosity and
color of field galaxies are determined predominantly by the mass of the halo in
which they reside and have little direct dependence on the environment in which
the host halo formed. In broader terms, our results show that the sizes and
emptiness of voids found in the distribution of L > 0.2L_* galaxies are in
excellent agreement with the predictions of a standard cosmological model with
a simple connection between galaxies and dark matter halos. (abridged)Comment: 20 emulateapj pages, 9 figures. submitted to Ap
Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts
Future extragalactic sub-millimetre and millimetre surveys have the potential
to provide a sensitive census of the level of obscured star formation in
galaxies at all redshifts. While in general there is good agreement between the
source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of
different depths and areas, it remains difficult to determine the redshift
distribution and bolometric luminosities of the sub-millimetre and millimetre
galaxy population. This is principally due to the ambiguity in identifying an
individual sub-millimetre source with its optical, IR or radio counterpart
which, in turn, prevents a confident measurement of the spectroscopic redshift.
Additionally, the lack of data measuring the rest-frame FIR spectral peak of
the sub-millimetre galaxies gives rise to poor constraints on their rest-frame
FIR luminosities and star formation rates. In this paper we describe
Monte-Carlo simulations of ground-based, balloon-borne and satellite
sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre
spectral energy distributions (250-850um) can be used to derive photometric
redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This
opportunity to break the redshift deadlock will provide an estimate of the
global star formation history for luminous optically-obscured galaxies [L(FIR)
> 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted
versio
A broadband spectroscopic search for CO line emission in HDF850.1: the brightest submillimetre object in the Hubble Deep Field North
Using the 100-m Green Bank Telescope, we have conducted a cm-wavelength
search for CO J=1-0 line emission towards the high-redshift, far-infrared
luminous object, HDF850.1 over the redshift interval 3.3<z<5.4. Despite the
wealth of existing multi-wavelength observations, and the recent identification
of a galaxy counterpart in deep K' band (2.2 um) imaging, an unambiguous
spectroscopic redshift has not yet been obtained for this object. A
far-infrared-to-radio wavelength photometric redshift technique however,
predicts a ~90% probability that the redshift is in the range, 3.3<z<5.4
(equivalent to an observed redshifted CO J=1-0 emission line frequency,
26.5>nu(obs)>18.0 GHz), making HDF850.1 a potential occupent of the
`high-redshift tail' of submm selected galaxies. We have also conducted a
search for CO J=2-1 line emission over the narrower redshift range, 3.9<z<4.3.
although we do not detect any CO line emission in this object, our limits to
the CO line luminosity are in broad agreement with the median value measured in
the current sample of high-redshift, submm selected objects detected in high-J
CO line emission, but not sufficient to fully test the validity of the
photometric redshift technique.Comment: accepted for publication in MNRA
The DEEP2 Galaxy Redshift Survey: The Evolution of Void Statistics from z~1 to z~0
We present measurements of the void probability function (VPF) at z~1 using
data from the DEEP2 Redshift Survey and its evolution to z~0 using data from
the Sloan Digital Sky Survey (SDSS). We measure the VPF as a function of galaxy
color and luminosity in both surveys and find that it mimics trends displayed
in the two-point correlation function, ; namely that samples of brighter,
red galaxies have larger voids (i.e. are more strongly clustered) than fainter,
blue galaxies. We also clearly detect evolution in the VPF with cosmic time,
with voids being larger in comoving units at z~0. We find that the reduced VPF
matches the predictions of a `negative binomial' model for galaxies of all
colors, luminosities, and redshifts studied. This model lacks a physical
motivation, but produces a simple analytic prediction for sources of any number
density and integrated two-point correlation function, \bar{\xi}. This implies
that differences in the VPF across different galaxy populations are consistent
with being due entirely to differences in the population number density and
\bar{\xi}. The robust result that all galaxy populations follow the negative
binomial model appears to be due to primarily to the clustering of dark matter
halos. The reduced VPF is insensitive to changes in the parameters of the halo
occupation distribution, in the sense that halo models with the same \bar{\xi}
will produce the same VPF. For the wide range of galaxies studied, the VPF
therefore does not appear to provide useful constraints on galaxy evolution
models that cannot be gleaned from studies of \bar{\xi} alone. (abridged)Comment: 17 pages, 15 figures, ApJ accepte
- …