8 research outputs found

    In vivo and ex vivo effects of propofol on myocardial performance in rats with obstructive jaundice

    Get PDF
    BACKGROUND: Responsiveness of the 'jaundiced heart' to propofol is not completely understood. The purpose of this study was to evaluate the effect of propofol on myocardial performance in rats with obstructive jaundice. METHODS: Male Sprague-Dawley rats (n = 40) were randomly allocated into two groups, twenty underwent bile duct ligation (BDL), and 20 underwent a sham operation. Seven days after the surgery, propofol was administered in vivo and ex vivo (Langendorff preparations). Heart rate, left ventricular end-systolic pressure (LVESP) left ventricular end-diastolic pressure (LVEDP), and maximal rate for left ventricular pressure rise and decline (+/- dP/dtmax ) were measured to determine the influence of propofol on the cardiac function of rats. RESULTS: Impaired basal cardiac function was observed in the isolated BDL hearts, whereas in vivo indices of basal cardiac function (LVESP and +/- dP/dt) in vivo were significantly higher in rats that underwent BDL compared with controls. With low or intermediate concentrations of propofol, these indices of cardiac function were within the normal physiologic range in both groups, and responsiveness to propofol was unaffected by BDL. When the highest concentration of propofol was administrated, a significant decline in cardiac function was observed in the BDL group. CONCLUSIONS: In rats that underwent BDL, basal cardiac performance was better in vivo and worse ex vivo compared with controls. Low and intermediate concentrations of propofol did not appear to impair cardiac function in rats with obstructive jaundice.published_or_final_versio

    Cirrhotic cardiomyopathy

    No full text
    Cirrhotic cardiomyopathy is a recently recognized condition in cirrhosis consisting of systolic incompetence under condition of stress, diastolic dysfunction related to altered diastolic relaxation, and electrophysiological abnormalities in the absence of any known cardiac disease. It can be diagnosed by using a combination of electrocardiograph, 2-dimensional echocardiography, and various serum markers such as brain natriuretic factor. The underlying pathogenetic mechanisms include abnormalities in the β-adrenergic signaling pathway, altered cardiomyocyte membrane fluidity, increased myocardial fibrosis, cardiomyocyte hypertrophy, and ion channel defects. Various compounds for which levels are elevated in cirrhosis such as nitric oxide and carbon monoxide can also exert a negative inotropic effect on the myocardium, whereas excess sodium and volume retention can lead to myocardial hypertrophy. Various toxins can also aggravate the ion channel defects, thereby widening the QRS complex causing prolonged QT intervals. Clinically, systolic incompetence is most evident when cirrhotic patients are placed under stress, whether physical or pharmacological, or when the extent of peripheral arterial vasodilatation demands an increased cardiac output as in the case of bacterial infections. Acute volume overload such as immediately after insertion of a transjugular intrahepatic portosystemic shunt or after liver transplantation can also tip these cirrhotic patients into cardiac failure. Treatment of cirrhotic cardiomyopathy is unsatisfactory. There is some evidence that β-blockade may help some cirrhotic patients with baseline prolonged QT interval. Long-term aldosterone antagonism may help reduce myocardial hypertrophy. Future studies should include further elucidation of pathogenetic mechanisms so as to develop effective treatment strategies

    Industrial Policy in Egypt 2004-2011

    No full text

    Dietary metabolism, the gut microbiome, and heart failure

    No full text
    corecore