10,633 research outputs found
On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers
This paper reports a comprehensive study on the gravitational wave (GW)
background from compact binary coalescences. We consider in our calculations
newly available observation-based neutron star and black hole mass
distributions and complete analytical waveforms that include post-Newtonian
amplitude corrections. Our results show that: (i) post-Newtonian effects cause
a small reduction in the GW background signal; (ii) below 100 Hz the background
depends primarily on the local coalescence rate and the average chirp
mass and is independent of the chirp mass distribution; (iii) the effects of
cosmic star formation rates and delay times between the formation and merger of
binaries are linear below 100 Hz and can be represented by a single parameter
within a factor of ~ 2; (iv) a simple power law model of the energy density
parameter up to 50-100 Hz is sufficient to be used
as a search template for ground-based interferometers. In terms of the
detection prospects of the background signal, we show that: (i) detection (a
signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO
detectors (H1-L1) requires a coalescence rate of for binary neutron stars (binary black holes); (ii) this limit on
could be reduced 3-fold for two co-located detectors, whereas the
currently proposed worldwide network of advanced instruments gives only ~ 30%
improvement in detectability; (iii) the improved sensitivity of the planned
Einstein Telescope allows not only confident detection of the background but
also the high frequency components of the spectrum to be measured. Finally we
show that sub-threshold binary neutron star merger events produce a strong
foreground, which could be an issue for future terrestrial stochastic searches
of primordial GWs.Comment: A few typos corrected to match the published version in MNRA
Space shuttle external tank performance improvements: The challenge
The external tank (ET) has been actively involved in performance improvements since the inception of the space shuttle program, primarily by weight savings. Weight savings were realized on the first block of flight articles (standard weight tank). With a need for further performance improvements, the ET Program Office was requested to develop a program to reduce tank weight an additional 6000 lb and schedule delivery of the first lightweight ET (LWT) for June 1982. The weight savings program was accomplished by: (1) a unique approach to use of factors of safety; (2) design optimization; and (3) redesign of structures with large margins of safety which resulted in an actual weight savings of 7294 lb. Additional studies have identified further weight savings which are to be implemented at appropriate times in production flow. Examples are an improved thermal protection system for the LH2 tank aft dome and reduction of slosh baffles in the LO2 tank based on flight data. All performance improvements were compared and selected based on non-recurring and recurring cost and technical risk
Star Formation Histories of Nearby Elliptical Galaxies. II. Merger Remnant Sample
This work presents high spectroscopic observations of a sample of six
suspected merger remnants, selected primarily on the basis of H{\sc i} tidal
debris detections. Single stellar population analysis of these galaxies
indicates that their ages, metallicities, and -enhancement ratios are
consistent with those of a representative sample of nearby elliptical galaxies.
The expected stellar population of a recent merger remnant, young age combined
with low [/Fe], is not seen in any H{\sc i}-selected galaxy. However,
one galaxy (NGC~2534), is found to deviate from the -plane in the sense
expected for a merger remnant. Another galaxy (NGC~7332), selected by other
criteria, best matches the merger remnant expectations.Comment: 12 pages, 10 figures, accepted by A
Resolving the Controversy Over the Core Radius of 47 Tucanae (NGC 104)
This paper investigates the discrepancy between recent measurements of the
density profile of the globular cluster 47 Tuc that have used HST data sets.
Guhathakurta et al. (1992) used pre-refurbishment WFPC1 V-band images to derive
r_c = 23" +/- 2". Calzetti et al. (1993) suggested that the density profile is
a superposition of two King profiles (r_c = 8" and r_c = 25") based on U-band
FOC images. De Marchi et al. (1996) used deep WFPC1 U-band images to derive r_c
= 12" +/- 2". Differences in the adopted cluster centers are not the cause of
the discrepancy. Our independent analysis of the data used by De Marchi et al.
reaches the following conclusions: (1) De Marchi et al.'s r_c ~ 12" value is
spuriously low, a result of radially-varying bias in the star counts in a
magnitude limited sample -- photometric errors and a steeply rising stellar
luminosity function cause more stars to scatter across the limiting magnitude
into the sample than out of it, especially near the cluster center where
crowding effects are most severe. (2) Changing the limiting magnitude to the
main sequence turnoff, away from the steep part of the luminosity function,
partially alleviates the problem and results in r_c = 18". (3) Combining such a
limiting magnitude with accurate photometry derived from PSF fitting, instead
of the less accurate aperture photometry employed by De Marchi et al., results
in a reliable measurement of the density profile which is well fit by r_c = 22"
+/- 2". Archival WFPC2 data are used to derive a star list with a higher degree
of completeness, greater photometric accuracy, and wider areal coverage than
the WFPC1 and FOC data sets; the WFPC2-based density profile supports the above
conclusions, yielding r_c = 24" +/- 1.9".Comment: 22 pages, 5 figures, 1 table; accepted for publication in PASP; see
http://www.ucolick.org/~raja/hgg.tar.gz for full-resolution figure
Transmission Electron Study of Heteroepitaxial Growth in the BiSrCaCuO System
Films of BiSrCaCuO and BiSrCuO have been grown using Atomic-Layer-by-Layer Molecular Beam
Epitaxy (ALL-MBE) on lattice-matched substrates. These materials have been
combined with layers of closely-related metastable compounds like BiSrCaCuO (2278) and rare-earth-doped
compounds like BiSrDyCaCuO
(Dy:2212) to form heterostructures with unique superconducting properties,
including superconductor/insulator multilayers and tunnel junctions.
Transmission electron microscopy (TEM) has been used to study the morphology
and microstructure of these heterostructures. These TEM studies shed light on
the physical properties of the films, and give insight into the growth mode of
highly anisotropic solids like BiSrCaCuO.Comment: 17 pages, submitted to J. Materials Research. Email to
[email protected] if you want to receive copies of the figure
Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy.
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies
Inverter-converter parallel operation
Development of static inverters or converters operating electrically in parallel for space vehicle application
- …