25 research outputs found

    In Situ SR-XPS Observation of Ni-Assisted Low-Temperature Formation of Epitaxial Graphene on 3C-SiC/Si

    Get PDF
    Low-temperature (~1073 K) formation of graphene was performed on Si substrates by using an ultrathin (2 nm) Ni layer deposited on a 3C-SiC thin film heteroepitaxially grown on a Si substrate. Angle-resolved, synchrotron-radiation X-ray photoemission spectroscopy (SR-XPS) results show that the stacking order is, from the surface to the bulk, Ni carbides(Ni(3)C/NiC(x))/graphene/Ni/Ni silicides (Ni(2)Si/NiSi)/3C-SiC/Si. In situ SR-XPS during the graphitization annealing clarified that graphene is formed during the cooling stage. We conclude that Ni silicide and Ni carbide formation play an essential role in the formation of graphene

    Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111)/Si(111)

    Get PDF
    Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111) thin films on Si(111) has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD) and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111)/Si(111) is Si-terminated before the graphitization, and it becomes C-terminated via the formation of C-rich (6√3 × 6√3)R30° reconstruction as the graphitization proceeds, in a similar manner as the epitaxy of graphene on Si-terminated 6H-SiC(0001) proceeds

    In-Situ Vibrational Study of SiO2/liquid Interface

    No full text
    The surface of SiO2 in contact with a liquid has been studied in situ by Fourier transform infrared spectroscopy, electrochemistry and ab initio quantum chemical calculations. Experimental issues arising from the cell designed have been addressed, notably the influence of the medium above the SiO2 film on the line shape of the Si–O vibrations. Using electrical potential control of the surface with electrochemistry, the hydrated states of the SiO2 surface have been identified, featuring a neutral SiOH species and pentavalent Si(OH)OH− anionic centers

    Precise control of epitaxy of graphene by microfabricating SiC substrate

    No full text
    Epitaxial graphene (EG) on SiC is promising owing to a capability to produce high-quality film on a wafer scale. One of the remaining issues is microscopic thickness variation of EG near surface steps, which induces variations in its electronic properties and device characteristics. We demonstrate here that the variations of layer thickness and electronic properties are minimized by using microfabricated SiC substrates which spatially confines the epitaxy. This technique will contribute to the realization of highly reliable graphene devices
    corecore