40 research outputs found

    Next-to-leading-order QCD Corrections to Higgs Production in association with a Jet

    Full text link
    We compute the next-to-leading-order (NLO) QCD corrections to the Higgs pT distribution in Higgs production in association with a jet via gluon fusion at the LHC, with exact dependence on the mass of the quark circulating in the heavy-quark loops. The NLO corrections are presented including the top-quark mass, and for the first time, the bottom-quark mass as well. Further, besides the on-shell mass scheme, we consider for the first time a running mass renormalisation scheme. The computation is based on amplitudes which are valid for arbitrary heavy-quark masses.Comment: LaTeX, 7 pages, 5 figure

    Hepta-Cuts of Two-Loop Scattering Amplitudes

    Full text link
    We present a method for the computation of hepta-cuts of two loop scattering amplitudes. Four dimensional unitarity cuts are used to factorise the integrand onto the product of six tree-level amplitudes evaluated at complex momentum values. Using Gram matrix constraints we derive a general parameterisation of the integrand which can be computed using polynomial fitting techniques. The resulting expression is further reduced to master integrals using conventional integration by parts methods. We consider both planar and non-planar topologies for 2 to 2 scattering processes and apply the method to compute hepta-cut contributions to gluon-gluon scattering in Yang-Mills theory with adjoint fermions and scalars.Comment: 37 pages, 6 figures. version 2 : minor updates, published versio

    Cuts from residues: the one-loop case

    Get PDF
    Using the multivariate residue calculus of Leray, we give a precise definition of the notion of a cut Feynman integral in dimensional regularization, as a residue evaluated on the variety where some of the propagators are put on shell. These are naturally associated to Landau singularities of the first type. Focusing on the one-loop case, we give an explicit parametrization to compute such cut integrals, with which we study some of their properties and list explicit results for maximal and next-to-maximal cuts. By analyzing homology groups, we show that cut integrals associated to Landau singularities of the second type are specific combinations of the usual cut integrals, and we obtain linear relations among different cuts of the same integral. We also show that all one-loop Feynman integrals and their cuts belong to the same class of functions, which can be written as parametric integrals.Comment: v2: fixed minor typos in the normalisation of cut integral

    The double-soft integral for an arbitrary angle between hard radiators

    No full text
    We consider the double-soft limit of a generic QCD process involving massless partons and integrate analytically the double-soft eikonal functions over the phase-space of soft partons (gluons or quarks) allowing for an arbitrary relative angle between the three-momenta of two hard massless radiators. This result provides one of the missing ingredients for a fully analytic formulation of the nested soft-collinear subtraction scheme described in Caola et al. (Eur Phys J C 77(4):248, 2017)

    Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

    No full text
    This is a contribution to the proceedings of the 2018 “Loops and Legs” conference. It is based on a talk by HF on ongoing work on the non-planar Feynman integrals contributing to H + j production at Next-to Leading order in QCD, retaining the complete dependence on the mass of the top-quark. The various non-planar sectors are discussed along with the elliptic structures that appear

    Vector Space of Feynman Integrals and Multivariate Intersection Numbers

    No full text
    Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for constructing multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the derivation of contiguity relations for special functions admitting multi-fold integral representations, and to the decomposition of a few Feynman integrals at one- and two-loops, as first steps towards potential applications to generic multi-loop integrals.Comment: 11 pages, 4 figure

    Decomposition of Feynman integrals by multivariate intersection numbers

    No full text
    We present a detailed description of the recent idea for a direct decomposition of Feynman integrals onto a basis of master integrals by projections, as well as a direct derivation of the differential equations satisfied by the master integrals, employing multivariate intersection numbers. We discuss a recursive algorithm for the computation of multivariate intersection numbers, and provide three different approaches for a direct decomposition of Feynman integrals, which we dub the straight decomposition, the bottom-up decomposition, and the top-down decomposition. These algorithms exploit the unitarity structure of Feynman integrals by computing intersection numbers supported on cuts, in various orders, thus showing the synthesis of the intersection-theory concepts with unitarity-based methods and integrand decomposition. We perform explicit computations to exemplify all of these approaches applied to Feynman integrals, paving a way towards potential applications to generic multi-loop integrals
    corecore