87 research outputs found

    Hyperbolic Kac-Moody superalgebras

    Full text link
    We present a classification of the hyperbolic Kac-Moody (HKM) superalgebras. The HKM superalgebras of rank larger or equal than 3 are finite in number (213) and limited in rank (6). The Dynkin-Kac diagrams and the corresponding simple root systems are determined. We also discuss a class of singular sub(super)algebras obtained by a folding procedure

    Yukawa terms in noncommutative SO(10) and E6 GUTs

    Full text link
    We propose a method for constructing Yukawa terms for noncommutative SO(10) and E6 GUTs, when these GUTs are formulated within the enveloping-algebra formalism. The most general noncommutative Yukawa term that we propose contains, at first order in thetamunu, the most general BRS invariant Yukawa contribution whose only dimensionful parameter is the noncommutativity parameter. This noncommutative Yukawa interaction is thus renormalisable at first order in thetamunu.Comment: 14 pages, no figure

    Anyonic Realization of the Quantum Affine Lie Superalgebra U_q(A(M,N)^{(1)})

    Full text link
    We give a realization of the quantum affine Lie superalgebras U_q(A(M,N))^(1) in terms of anyons defined on a one or two-dimensional lattice, the deformation parameter q being related to the statistical parameter ν\nu of the anyons by q = exp(i\pi\nu). The construction uses anyons contructed from usual fermionic oscillators and deformed bosonic oscillators. As a byproduct, realization deformed in any sector of the quantum superalgebras U_q(A(M,N)) is obtained.Comment: 14p LaTeX Document (should be run twice

    Orthosymplectically invariant functions in superspace

    Get PDF
    The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schroedinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally the obtained machinery is used to prove the Funk-Hecke theorem and Bochner's relations in superspace.Comment: J. Math. Phy

    Quantum Loop Subalgebra and Eigenvectors of the Superintegrable Chiral Potts Transfer Matrices

    Full text link
    It has been shown in earlier works that for Q=0 and L a multiple of N, the ground state sector eigenspace of the superintegrable tau_2(t_q) model is highly degenerate and is generated by a quantum loop algebra L(sl_2). Furthermore, this loop algebra can be decomposed into r=(N-1)L/N simple sl_2 algebras. For Q not equal 0, we shall show here that the corresponding eigenspace of tau_2(t_q) is still highly degenerate, but splits into two spaces, each containing 2^{r-1} independent eigenvectors. The generators for the sl_2 subalgebras, and also for the quantum loop subalgebra, are given generalizing those in the Q=0 case. However, the Serre relations for the generators of the loop subalgebra are only proven for some states, tested on small systems and conjectured otherwise. Assuming their validity we construct the eigenvectors of the Q not equal 0 ground state sectors for the transfer matrix of the superintegrable chiral Potts model.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 28 pages, uses eufb10 and eurm10 fonts. Typeset twice! Version 2: Details added, improvements and minor corrections made, erratum to paper 2 included. Version 3: Small paragraph added in introductio

    Development of a unified tensor calculus for the exceptional Lie algebras

    Full text link
    The uniformity of the decomposition law, for a family F of Lie algebras which includes the exceptional Lie algebras, of the tensor powers ad^n of their adjoint representations ad is now well-known. This paper uses it to embark on the development of a unified tensor calculus for the exceptional Lie algebras. It deals explicitly with all the tensors that arise at the n=2 stage, obtaining a large body of systematic information about their properties and identities satisfied by them. Some results at the n=3 level are obtained, including a simple derivation of the the dimension and Casimir eigenvalue data for all the constituents of ad^3. This is vital input data for treating the set of all tensors that enter the picture at the n=3 level, following a path already known to be viable for a_1. The special way in which the Lie algebra d_4 conforms to its place in the family F alongside the exceptional Lie algebras is described.Comment: 27 pages, LaTeX 2

    Knots in SU(M∣N)SU\left(M|N\right) Chern-Simons Field Theory

    Full text link
    Knots in the Chern-Simons field theory with Lie super gauge group SU(M∣N)SU\left(M|N\right) are studied, and the % S_{L}\left(\alpha,\beta,z\right) polynomial invariant with skein relations are obtained under the fundamental representation of su(M∣N)\mathfrak{su}\left(M|N\right) .Comment: 15 pages, 5 figure

    Conserved Charges in the Principal Chiral Model on a Supergroup

    Full text link
    The classical principal chiral model in 1+1 dimensions with target space a compact Lie supergroup is investigated. It is shown how to construct a local conserved charge given an invariant tensor of the Lie superalgebra. We calculate the super-Poisson brackets of these currents and argue that they are finitely generated. We show how to derive an infinite number of local charges in involution. We demonstrate that these charges Poisson commute with the non-local charges of the model

    Classical Lie algebras and Drinfeld doubles

    Full text link
    The Drinfeld double structure underlying the Cartan series An, Bn, Cn, Dn of simple Lie algebras is discussed. This structure is determined by two disjoint solvable subalgebras matched by a pairing. For the two nilpotent positive and negative root subalgebras the pairing is natural and in the Cartan subalgebra is defined with the help of a central extension of the algebra. A new completely determined basis is found from the compatibility conditions in the double and a different perspective for quantization is presented. Other related Drinfeld doubles on C are also considered.Comment: 11 pages. submitted for publication to J. Physics

    Strings from N=2N=2 Gauged Wess-Zumino-Witten Models

    Get PDF
    We present an algebraic approach to string theory. An embedding of sl(2∣1)sl(2|1) in a super Lie algebra together with a grading on the Lie algebra determines a nilpotent subalgebra of the super Lie algebra. Chirally gauging this subalgebra in the corresponding Wess-Zumino-Witten model, breaks the affine symmetry of the Wess-Zumino-Witten model to some extension of the N=2N=2 superconformal algebra. The extension is completely determined by the sl(2∣1)sl(2|1) embedding. The realization of the superconformal algebra is determined by the grading. For a particular choice of grading, one obtains in this way, after twisting, the BRST structure of a string theory. We classify all embeddings of sl(2∣1)sl(2|1) into Lie super algebras and give a detailed account of the branching of the adjoint representation. This provides an exhaustive classification and characterization of both all extended N=2N=2 superconformal algebras and all string theories which can be obtained in this way.Comment: 50 pages, LaTe
    • …
    corecore