1,657 research outputs found

    Dynamic characteristics and processing of fillers in polyurethane elastomers for vibration damping applications

    Get PDF
    Polyurethane elastomers have the potential of being used to reduce vibrational noise in many engineering applications. The performance of the elastomer is directly related to matching the nature of the mechanical loss characteristics to the frequency and temperature dependence of the source of the vibration. Materials with a broad frequency response and good mechanical properties are desirable for situations were load bearing and isolation becomes an issue. Because automobile, and other related vehicles operate over a broad temperature range, it is desirable for the damping characteristics of the elastomer to ideally be independent of temperature and frequency. In practice, this is not possible and the creation of materials with a broad spectrum response is desirable. In this paper, the effects of various fillers on the breadth and temperature dependence of the vibration damping characteristics of a filled and crosslinked polyurethane elastomer are explored. The fillers studied are wollastonite, barium sulphate and talc. These materials have different shapes, sizes and surface chemistry and undergo different types of interaction with the matrix. The vibration damping characteristics were further varied by the use of a crosslinking agent. Data presented on the rheological characteristics indicate the strength of the filler-polyol interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate the way in which changes in the type of filler, concentration and amount of crosslinker lead to changes in the location and breadth of the energy dissipation process in these elastomers. The vibration damping characteristics of a selected material are presented to demonstrate the potential of these materials

    Global distribution of ship tracks from one year of AATSRdata

    Get PDF
    The perturbation of a cloud layer by ship-generated aerosol changes the cloud reflectivity and is identified by elongated structures in satellite images, known as ship tracks. As ship tracks indicate a pollution of the clean marine environment and also affect the radiation budget below and above the cloud, it is important to investigate their radiative and climate impact. In this study we use satellite data to examine the effects of ship tracks on a particular scene as well as on the global scale. The cloud optical and microphysical properties are derived using a semi-analytical retrieval technique combined with a look-up-table approach. Within the ship tracks a significant change in the droplet number concentration, the effective radius and the optical thickness are found compared to the unaffected cloud. The resulting cloud properties are used to calculate the radiation budget below and above the cloud. Local impacts are shown for a selected scene from MODIS on Terra. The mean reflectance at top of atmosphere (TOA) is increased by 40.8 Wm-2. For a particular scene chosen close to the West Coast of North America on 10th February 2003, ship emissions increase the backscattered solar radiation at TOA by 2.0Wm-2, corresponding to a negative radiative forcing (RF). A global distribution of ship tracks derived from one year of AATSR data shows high spatial and temporal variability with highest occurrence of ship tracks westward of North America and the southwest coast of Africa, but small RF on the global scale

    Fall-Off from Extrapolated Values of All Chemical Reactions at Very High Temperatures

    Full text link

    The Dynamics of Life. I. Death from Internal Irradiation by 239Pu and 226Ra, Aging, Cancer, and Other Diseases

    Full text link

    AN APPROXIMATE CELL MODEL FOR LIQUID HYDROGEN, I

    Full text link

    On the equation of state of a dense columnar liquid crystal

    Full text link
    An accurate description of a columnar liquid crystal of hard disks at high packing fractions is presented using an improved free-volume theory. It is shown that the orientational entropy of the disks in the one-dimensional fluid direction leads to a different high-density scaling pressure compared to the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte-Carlo simulation results for various thermodynamic and structural properties of the columnar state.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    SIGNIFICANT STRUCTURES IN LIQUIDS, III. PARTITION FUNCTION FOR FUSED SALTS

    Full text link

    Cooperative Jahn-Teller Distortion in PrO2

    Full text link
    We report neutron diffraction data on single crystal PrO2 which reveal a cooperative Jahn-Teller distortion at TD = 120 +/- 2 K. Below this temperature an internal distortion of the oxygen sublattice causes the unit cell of the crystallographic structure to become doubled along one crystal axis. We discuss several possible models for this structure. The antiferromagnetic structure below TN = 13.5 K is found to consist of two components, one of which shares the same doubled unit cell as the distorted crystallographic structure. We also present measurements of the magnetic susceptibility, the specific heat capacity and the electrical conductivity of PrO2. The susceptibility data show an anomaly at a temperature close to TD. From the specific heat capacity data we deduce that the ground state is doubly degenerate, consistent with a distortion of the cubic local symmetry. We discuss possible mechanisms for this. The conductivity shows an activated behaviour with an activation energy Ea = 0.262 +/- 0.003 eV.Comment: 12 pages, 14 figures, 2 tables. Additional suggested structure in v

    Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene

    Full text link
    The symmetry group analysis is applied to classify the phonon modes of NN-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly their infra-red and Raman properties. The dispersions of various phonon modes are calculated in a multi-layer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the inter-layer interactions in NSGL's. The experimentally reported red shift phenomena in the layer number dependence of the intra-layer optical C-C stretching mode frequencies are interpreted. An interesting low frequency inter-layer optical mode is revealed to be Raman or Infra-red active in even or odd NSGL's respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.Comment: enlarged versio

    Radial distribution function of liquid argon according to significant structure theory

    Full text link
    • …
    corecore