12 research outputs found

    Uncovering the Oppenheimer Siddur: using scientific analysis to reveal the production process of a medieval illuminated Hebrew manuscript

    Get PDF
    The aim of this research was to use non-invasive scientifc analysis to uncover evidence of the planning process and relationship between pigments used in text copying and artwork production in the Oppenheimer Siddur (Oxford Bodleian Library MS Opp. 776), an illuminated 15th-century Hebrew prayer book. In many medieval Hebrew illuminated manuscripts, the authorship of the artwork is unknown. This manuscript’s colophon states that it was copied by its scribe-owner for personal family use but does not confrm who was responsible for the artwork. Prior deductive analysis suggested that the scribe-owner may also have been the manuscript’s artist, based on common motifs and an apparent shared colour palette appearing in both texts and artwork. Visual examination using high resolution digital images also identifed points of contact between pigments used in the manuscript’s texts and artwork, raising questions about the pigment application sequence, and concurrent versus sequential text copying and artwork production. An in-house developed remote spectral imaging system (PRISMS) with 10 flters spanning the spectral range from 400 to 880 nm was modifed for close-range application to image two of the folios to examine the sequence of production, identify the pigments and compare the materials used for the illumination and the text. Optical microscopy and Fourier Transform Infrared spectroscopy in the attenuated total refection mode (FTIR-ATR) were used directly on the folios to complement the spectral imaging data in binding media and pigment identifcation. The results revealed close matches in refectance spectra for the colorants and inks used in both text copying and illuminations, suggesting that the same mixture of colorants and inks have been used. The spectral imaging in the near infrared bands revealed a hidden underdrawing, indicating a design change during production of the manuscript, and the outlining of letters prior to coloured pigment being applied. The pigment use, the variation in the binder for diferent pigments and some elements of its production were found to be consistent with those described in historical sources. The evidence from this study supports the hypothesis that the scribe applied pigments for the manuscript’s artwork at the same time he did some of the scribal work which has implications for understandings of Jewish medieval visual cultures

    Combined effects of 3D bone marrow stem cell-seeded wet-electrospun poly lactic acid scaffolds on full-thickness skin wound healing

    Full text link
    © 2017 Taylor & Francis. Tissue engineering has emerged as an alternative treatment to traditional grafts for skin wound healing. Three-dimensional nanofibers have been used extensively for this purpose due to their excellent biomedical-related properties. In this study, high porous 3D poly lactic acid nanofibrous scaffolds (PLA-S) were prepared by wet-electrospinning technique and seeded with rat bone-marrow stem cells (BMSCs) to characterize the biocompatibility and therapeutic efficacy of these fibers on the treating full-thickness dermal wounds. The results of in vitro andin vivo studies indicate that the 3D fibrous PLA-S can be a potential wound dressing for wound repair, particularly when seeded with BMSCs. GRAPHICAL ABSTRACT

    Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics

    Full text link
    Hydrogels are mainly structures formed from biopolymers and/or polyelectrolytes, and contain large amounts of trapped water. Smart cellulose-based superabsorbent hydrogels are the new generation of scaffold which fabricated directly from native cellulose (including bacterial cellulose) via cellulose dissolution. Cellulose has many hydroxyl groups and can be used to prepare hydrogels with fascinating structures and properties. Cellulose hydrogels based on its derivatives, including methyl cellulose (MC), hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), and carboxymethyl cellulose (CMC) can be fabricated by various methods. On the basis of the cross-linking method, the hydrogels can be divided into chemical and physical gels. Physical gels are formed by molecular self-assembly through ionic or hydrogen bonds, while chemical gels are formed by covalent bonds. Composite smart hydrogels are prepared using cellulose in conjunction with other polymers through blending, formation of polyelectrolyte complexes, and interpenetrating polymer networks (IPNs) technology. According to type of superabsorbent cellulose-based hydrogels fabrication methods, there are many various techniques to evaluate quality of them. Briefly, some of these means generally used to assess the hydrogel are described as following. The obtained gel membranes are characterized by infrared spectroscopy, scanning electron microscopy, thermo gravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic extensional properties, respectively. This review highlights the recent progress in smart cellulose-based superabsorbent hydrogel designs, fabrication approaches and characterization methods, leading to the development of cellulose based smart superabsorbent hydrogels

    Advanced bioengineering of male germ stem cells to preserve fertility.

    Full text link
    In modern life, several factors such as genetics, exposure to toxins, and aging have resulted in significant levels of male infertility, estimated to be approximately 18% worldwide. In response, substantial progress has been made to improve in vitro fertilization treatments (e.g. microsurgical testicular sperm extraction (m-TESE), intra-cytoplasmic sperm injection (ICSI), and round spermatid injection (ROSI)). Mimicking the structure of testicular natural extracellular matrices (ECM) outside of the body is one clear route toward complete in vitro spermatogenesis and male fertility preservation. Here, a new wave of technological innovations is underway applying regenerative medicine strategies to cell-tissue culture on natural or synthetic scaffolds supplemented with bioactive factors. The emergence of advanced bioengineered systems suggests new hope for male fertility preservation through development of functional male germ cells. To date, few studies aimed at in vitro spermatogenesis have resulted in relevant numbers of mature gametes. However, a substantial body of knowledge on conditions that are required to maintain and mature male germ cells in vitro is now in place. This review focuses on advanced bioengineering methods such as microfluidic systems, bio-fabricated scaffolds, and 3D organ culture applied to the germline for fertility preservation through in vitro spermatogenesis

    Spermatogenesis induction of spermatogonial stem cells using nanofibrous poly(l-lactic acid)/multi-walled carbon nanotube scaffolds and naringenin

    Full text link
    © 2019 John Wiley & Sons, Ltd. Spermatogenesis is a process in which animals generate spermatozoa from spermatogonial stem cells (SSCs). Successful in vitro differentiation of SSCs towards spermatids holds a significant promise for regeneration of impaired spermatogenesis. The present study aims to evaluate the efficiency of a 3D culture containing naringenin on proliferation and differentiation potentials of mouse SSCs. In this study, multi-walled carbon nanotubes (MWCNTs) were incorporated into poly(l-lactic acid) (PLLA) fibers via electrospinning technique. The fibrous PLLA/MWCNTs were studied by Fourier-transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), water contact angle measurements, electrical conductivity, and mechanical properties. Next, the SSCs were seeded into the PLLA/MWCNTs scaffolds and exhibited preferable survival and differentiation efficiency to subsequent cell lines. To shed more light on this matter, the immunocytochemistry, reverse-transcription polymerase chain reaction (RT-PCR), and qRT-PCR results showed that the aforementioned cells on the 3D fabrics overexpressed the C-kit and SYCP3 proteins. In addition, the reactive oxygen species (ROS) measurement data demonstrated that naringenin, an effective antioxidant, plays an important role in in vitro spermatogenesis. Taken together, the results of this study revealed the synergistic effects of 3D scaffolds and naringenin for efficient spermatogenesis in laboratories
    corecore