279 research outputs found

    The relationship between compression garments and electrocardiogram signals during exercise and recovery phase

    Full text link
    © 2019 The Author(s). Background: The direction of the current research was to investigate whether electrocardiogram (ECG) signals have been impacted by using compression garments during exercise and recovery phase. Each subject is non-athletes, conducted two running tests, wearing either non-compression garments (NCGs) or compression garments (CGs) throughout experiments and 2-h of the recovery phase. Experiment 1 (number of participants (n) = 8; 61.4 ± 13.7 kg, 25.1 ± 3.8 years, 165.9 ± 8.3 cm) focused on the exercising phase while Experiment 2 (n = 14; 60.9 ± 12.0 kg, 24.7 ± 4.5 years, 166.0 ± 7.6 cm) concentrated on the recovery phase. Electrocardiogram (ECG) data were collected through wearable biosensors. Results: The results demonstrated a significant difference between compression garments and non-compression garments at the end of the tests and from 90 min onwards during the recovery phase (p < 0.05). Corrected QT (QTc), ST interval and heart rate (HR) indicated the significant difference between NCGs and CGs. Conclusion: Based on the findings, the utilization of compression garments showed a positive influence in non-athletes based on the quicker recovery in HR, ST, and QTc

    Identifying optimal greyhound track design for greyhound safety and welfare

    Full text link

    The effects of surface compliance on greyhound galloping dynamics

    Full text link
    © IMechE 2019. Greyhounds are the fastest breed of dog and can reach a speed up to 68 km/h. These racing animals sustain unique injuries seldom seen in other breeds of dog. The highest rate of life-threatening injuries in these dogs is hock fracture, mostly of the right hind-leg. One of the main injury contributing factors in this sport is the track surface. There are some studies into the ideal track surface composition for greyhound racing but almost no study has investigated the body–surface interaction. Accordingly, the purpose of this work is to study the effect of surface compliance on the galloping dynamics of greyhounds during the hind-leg single-support phase which is a critical phase in hock injuries. Thus, a three degrees-of-freedom model for the greyhound body and substrate surface is designed using spring-loaded inverted pendulum method. The results showed that forces acting on the hind-leg were substantially affected when the surface compliance altered from the relatively hard (natural grass) to a relatively soft surface (synthetic rubber). The main contribution of this work is designing a mathematical model to predict the dynamics of the hock and the hind-leg as the most vulnerable body parts in greyhounds. Furthermore, this model can be used to optimise the greyhound track surface composition and therefore improve the safety and welfare within the greyhound racing industry

    Analysis of agile canine gait characteristics using accelerometry

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. The high rate of severe injuries associated with racing greyhounds poses a significant problem for both animal welfare and the racing industry. Using accelerometry to develop a better understanding of the complex gait of these agile canines may help to eliminate injury contributing factors. This study used a single Inertial Measurement Unit (IMU) equipped with a tri-axial accelerometer to characterise the galloping of thirty-one greyhounds on five different race tracks. The dorsal-ventral and anterior-posterior accelerations were analysed in both the time and frequency domains. The fast Fourier transform (FFT) and Morlet wavelet transform were applied to signals. The time-domain signals were synced with the corresponding high frame rate videos of the race. It is observed that the acceleration peaks in the dorsal-ventral accelerations correspond to the hind-leg strikes which were noted to be fifteen times the greyhound’s weight. The FFT analysis showed that the stride frequencies in all tracks were around 3.5 Hz. The Morlet wavelet analysis also showed a reduction in both the frequency and magnitude of signals, which suggests a speed reduction throughout the race. Also, by detecting abrupt changes along the track, the wavelet analysis highlighted potentially hazardous locations on the track. In conclusion, the methods applied in this research contribute to animal safety and welfare by eliminating the factors leading to injuries through optimising the track design and surface type

    Dynamic Behaviour of High Performance of Sand Surfaces Used in the Sports Industry

    Full text link
    The sand surface is considered a critical injury and performance contributing factor in different sports, from beach volleyball to greyhound racing. However, there is still a significant gap in understanding the dynamic behaviour of sport sand surfaces, particularly their vibration behaviour under impact loads. The purpose of this research was to introduce different measurement techniques to the study of sports sand surface dynamic behaviour. This study utilised an experimental drop test, accelerometry, in-situ moisture content and firmness data, to investigate the possible correlation between the sand surface and injuries. The analysis is underpinned by data gathered from greyhound racing and discussed where relevant.</jats:p

    A 5d/3d duality from relativistic integrable system

    Full text link
    We propose and prove a new exact duality between the F-terms of supersymmetric gauge theories in five and three dimensions with adjoint matter fields. The theories are compactified on a circle and are subject to the Omega deformation. In the limit proposed by Nekrasov and Shatashvili, the supersymmetric vacua become isolated and are identified with the eigenstates of a quantum integrable system. The effective twisted superpotentials are the Yang-Yang functional of the relativistic elliptic Calogero-Moser model. We show that they match on-shell by deriving the Bethe ansatz equation from the saddle point of the five-dimensional partition function. We also show that the Chern-Simons terms match and extend our proposal to the elliptic quiver generalizations.Comment: 30 pages, 4 figures. v2: typo corrected, references adde
    corecore