12,419 research outputs found

    In field N transfer, build-up, and leaching in ryegrass-clover mixtures

    Get PDF
    Two field experiments investigating dynamics in grass-clover mixtures were conducted, using 15N- and 14C-labelling to trace carbon (C) and nitrogen (N) from grass (Lolium perenne L.) and clover (Trifolium repens L. and Trifolium pratense L.). The leaching of dissolved inorganic nitrogen (DIN), as measured in pore water sampled by suction cups, increased during the autumn and winter, whereas the leaching of dissolved organic nitrogen (DON) was fairly constant during this period. Leaching of 15N from the sward indicated that ryegrass was the direct source of less than 1-2 percent of the total N leaching measured, whereas N dynamics pointed to clover as an important contributor to N leaching. Sampling of roots indicates that the dynamics in smaller roots were responsible for N and C build-up in the sward, and that N became available for transfer among species and leaching from the root zone. The bi-directional transfer of N between ryegrass and clover could however not be explained only by root turnover. Other processes like direct uptake of organic N compounds, may have contributed

    Single wall carbon nanotube double quantum dot

    Full text link
    We report on two top-gate defined, coupled quantum dots in a semiconducting single wall carbon nanotube, constituting a tunable double quantum dot system. The single wall carbon nanotubes are contacted by titanium electrodes, and gated by three narrow top-gate electrodes as well as a back-gate. We show that a bias spectroscopy plot on just one of the two quantum dots can be used to extract the addition energy of both quantum dots. Furthermore, honeycomb charge stability diagrams are analyzed by an electrostatic capacitor model that includes cross capacitances, and we extract the coupling energy of the double quantum dot.Comment: Published in Applied Physics Letters 4 December 2006. http://link.aip.org/link/?APL/89/23211

    Critical Current 0-π\pi Transition in Designed Josephson Quantum Dot Junctions

    Full text link
    We report on quantum dot based Josephson junctions designed specifically for measuring the supercurrent. From high-accuracy fitting of the current-voltage characteristics we determine the full magnitude of the supercurrent (critical current). Strong gate modulation of the critical current is observed through several consecutive Coulomb blockade oscillations. The critical current crosses zero close to, but not at, resonance due to the so-called 0-π\pi transition in agreement with a simple theoretical model.Comment: 5 pages, 4 figures, (Supplementary information available at http://www.fys.ku.dk/~hij/public/nl_supp.pdf

    The Flow of Gases in Narrow Channels

    Get PDF
    Measurements were made of the flow of gases through various narrow channels a few microns wide at average pressures from 0.00003 to 40 cm. Hg. The flow rate, defined as the product of pressure and volume rate of flow at unit pressure difference, first decreased linearly with decrease in mean pressure in the channel, in agreement with laminar-flow theory, reached a minimum when the mean path length was approximately equal to the channel width, and then increased to a constant value. The product of flow rate and square root of molecular number was approximately the same function of mean path length for all gases for a given channel

    Meteorological application of Apollo photography Final report

    Get PDF
    Development of meteorological information and parameters based on cloud photographs taken during Apollo 9 fligh

    Initial results from the Caltech/DRSI balloon-borne isotope experiment

    Get PDF
    The Caltech/DSRI balloonborne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May, 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approx. 1.5 to 2.2 GeV/nucleon depending on the element. During approximately 38 hours at float altitude, 100,000 events were recorded with Z or = 6 and incident energies approx. 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the preflight Bevalac calibration and the flight data

    Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots

    Get PDF
    We study low-temperature transport through carbon nanotube quantum dots in the Coulomb blockade regime coupled to niobium-based superconducting leads. We observe pronounced conductance peaks at finite source-drain bias, which we ascribe to elastic and inelastic cotunneling processes enhanced by the coherence peaks in the density of states of the superconducting leads. The inelastic cotunneling lines display a marked dependence on the applied gate voltage which we relate to different tunneling-renormalizations of the two subbands in the nanotube. Finally, we discuss the origin of an especially pronounced sub-gap structure observed in every fourth Coulomb diamond
    corecore