19,015 research outputs found
A Formal Treatment of Generalized Preferential Attachment and its Empirical Validation
Generalized preferential attachment is defined as the tendency of a vertex to
acquire new links in the future with respect to a particular vertex property.
Understanding which properties influence link acquisition tendency (LAT) gives
us a predictive power to estimate the future growth of network and insight
about the actual dynamics governing the complex networks. In this study, we
explore the effect of age and degree on LAT by analyzing data collected from a
new complex-network growth dataset. We found that LAT and degree of a vertex
are linearly correlated in accordance with previous studies. Interestingly, the
relation between LAT and age of a vertex is found to be in conflict with the
known models of network growth. We identified three different periods in the
network's lifetime where the relation between age and LAT is strongly positive,
almost stationary and negative correspondingly
Influence of the Cortical Midline Structures on Moral Emotion and Motivation in Moral Decision-Making
The present study aims to examine the relationship between the cortical midline structures (CMS), which have been regarded to be associated with selfhood, and moral decision making processes at the neural level. Traditional moral psychological studies have suggested the role of moral self as the moderator of moral cognition, so activity of moral self would present at the neural level. The present study examined the interaction between the CMS and other moral-related regions by conducting psycho-physiological interaction analysis of functional images acquired while 16 subjects were solving moral dilemmas. Furthermore, we performed Granger causality analysis to demonstrate the direction of influences between activities in the regions in moral decision-making. We first demonstrate there are significant positive interactions between two central CMS seed regions—i.e., the medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC)—and brain regions associated with moral functioning including the cerebellum, brainstem, midbrain, dorsolateral prefrontal cortex, orbitofrontal cortex and anterior insula (AI); on the other hand, the posterior insula (PI) showed significant negative interaction with the seed regions. Second, several significant Granger causality was found from CMS to insula regions particularly under the moral-personal condition. Furthermore, significant dominant influence from the AI to PI was reported. Moral psychological implications of these findings are discussed. The present study demonstrated the significant interaction and influence between the CMS and morality-related regions while subject were solving moral dilemmas. Given that, activity in the CMS is significantly involved in human moral functioning
Classification of scale-free networks
While the emergence of a power law degree distribution in complex networks is
intriguing, the degree exponent is not universal. Here we show that the
betweenness centrality displays a power-law distribution with an exponent \eta
which is robust and use it to classify the scale-free networks. We have
observed two universality classes with \eta \approx 2.2(1) and 2.0,
respectively. Real world networks for the former are the protein interaction
networks, the metabolic networks for eukaryotes and bacteria, and the
co-authorship network, and those for the latter one are the Internet, the
world-wide web, and the metabolic networks for archaea. Distinct features of
the mass-distance relation, generic topology of geodesics and resilience under
attack of the two classes are identified. Various model networks also belong to
either of the two classes while their degree exponents are tunable.Comment: 6 Pages, 6 Figures, 1 tabl
The first-mover advantage in scientific publication
Mathematical models of the scientific citation process predict a strong
"first-mover" effect under which the first papers in a field will, essentially
regardless of content, receive citations at a rate enormously higher than
papers published later. Moreover papers are expected to retain this advantage
in perpetuity -- they should receive more citations indefinitely, no matter how
many other papers are published after them. We test this conjecture against
data from a selection of fields and in several cases find a first-mover effect
of a magnitude similar to that predicted by the theory. Were we wearing our
cynical hat today, we might say that the scientist who wants to become famous
is better off -- by a wide margin -- writing a modest paper in next year's
hottest field than an outstanding paper in this year's. On the other hand,
there are some papers, albeit only a small fraction, that buck the trend and
attract significantly more citations than theory predicts despite having
relatively late publication dates. We suggest that papers of this kind, though
they often receive comparatively few citations overall, are probably worthy of
our attention.Comment: 7 pages, 3 figure
Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals
The quasi-unit cell picture describes the atomic structure of quasicrystals
in terms of a single, repeating cluster which overlaps neighbors according to
specific overlap rules. In this paper, we discuss the precise relationship
between a general atomic decoration in the quasi-unit cell picture atomic
decorations in the Penrose tiling and in related tiling pictures. Using these
relations, we obtain a simple, practical method for determining the density,
stoichiometry and symmetry of a quasicrystal based on the atomic decoration of
the quasi-unit cell taking proper account of the sharing of atoms between
clusters.Comment: 14 pages, 8 figure
Anisotropic strains and magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3}
Thin films of perovskite manganite La_{0.7}Ca_{0.3}MnO_{3} were grown
epitaxially on SrTiO_3(100), MgO(100) and LaAlO_3(100) substrates by the pulsed
laser deposition method. Microscopic structures of these thin film samples as
well as a bulk sample were fully determined by x-ray diffraction measurements.
The unit cells of the three films have different shapes, i.e., contracted
tetragonal, cubic, and elongated tetragonal for SrTiO_3, MgO, and LaAlO_3
cases, respectively, while the unit cell of the bulk is cubic. It is found that
the samples with cubic unit cell show smaller peak magnetoresistance than the
noncubic ones do. The present result demonstrates that the magnetoresistance of
La_{0.7}Ca_{0.3}MnO_{3} can be controlled by lattice distortion via externally
imposed strains.Comment: Revtex, 10 pages, 2 figure
Purification and detection of entangled coherent states
In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a
proposal is made to generate entangled macroscopically distinguishable states
of two spatially separated traveling optical modes. We model the decoherence
due to light scattering during the propagation along an optical transmission
line and propose a setup allowing an entanglement purification from a number of
preparations which are partially decohered due to transmission. A purification
is achieved even without any manual intervention. We consider a nondemolition
configuration to measure the purity of the state as contrast of interference
fringes in a double-slit setup. Regarding the entangled coherent states as a
state of a bipartite quantum system, a close relationship between purity and
entanglement of formation can be obtained. In this way, the contrast of
interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex
Cluster Model of Decagonal Tilings
A relaxed version of Gummelt's covering rules for the aperiodic decagon is
considered, which produces certain random-tiling-type structures. These
structures are precisely characterized, along with their relationships to
various other random tiling ensembles. The relaxed covering rule has a natural
realization in terms of a vertex cluster in the Penrose pentagon tiling. Using
Monte Carlo simulations, it is shown that the structures obtained by maximizing
the density of this cluster are the same as those produced by the corresponding
covering rules. The entropy density of the covering ensemble is determined
using the entropic sampling algorithm. If the model is extended by an
additional coupling between neighboring clusters, perfectly ordered structures
are obtained, like those produced by Gummelt's perfect covering rules.Comment: 10 pages, 20 figures, RevTeX; minor changes; to be published in Phys.
Rev.
Nonclassicality of a photon-subtracted Gaussian field
Published versio
- …