8,243 research outputs found
Optimization of graded multilayer designs for astronomical x-ray telescopes
We developed a systematic method for optimizing the design of depth-graded multilayers for astronomical hard-x-ray and soft-γ-ray telescopes based on the instrument’s bandpass and the field of view. We apply these methods to the design of the conical-approximation Wolter I optics employed by the balloon-borne High Energy Focusing Telescope, using W/Si as the multilayer materials. In addition, we present optimized performance calculations of mirrors, using other material pairs that are capable of extending performance to photon energies above the W K-absorption edge (69.5 keV), including Pt/C, Ni/C, Cu/Si, and Mo/Si
On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces
We study the recurrence and ergodicity for the billiard on noncompact
polygonal surfaces with a free, cocompact action of or . In the
-periodic case, we establish criteria for recurrence. In the more difficult
-periodic case, we establish some general results. For a particular
family of -periodic polygonal surfaces, known in the physics literature
as the wind-tree model, assuming certain restrictions of geometric nature, we
obtain the ergodic decomposition of directional billiard dynamics for a dense,
countable set of directions. This is a consequence of our results on the
ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure
Addendum to: Capillary floating and the billiard ball problem
We compare the results of our earlier paper on the floating in neutral
equilibrium at arbitrary orientation in the sense of Finn-Young with the
literature on its counterpart in the sense of Archimedes. We add a few remarks
of personal and social-historical character.Comment: This is an addendum to my article Capillary floating and the billiard
ball problem, Journal of Mathematical Fluid Mechanics 14 (2012), 363 -- 38
Binary inspiral, gravitational radiation, and cosmology
Observations of binary inspiral in a single interferometric gravitational
wave detector can be cataloged according to signal-to-noise ratio and
chirp mass . The distribution of events in a catalog composed of
observations with greater than a threshold depends on the
Hubble expansion, deceleration parameter, and cosmological constant, as well as
the distribution of component masses in binary systems and evolutionary
effects. In this paper I find general expressions, valid in any homogeneous and
isotropic cosmological model, for the distribution with and of
cataloged events; I also evaluate these distributions explicitly for relevant
matter-dominated Friedmann-Robertson-Walker models and simple models of the
neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker
cosmological models advanced LIGO detectors will observe binary neutron star
inspiral events with from distances not exceeding approximately
, corresponding to redshifts of (0.26) for
(), at an estimated rate of 1 per week. As the binary system mass
increases so does the distance it can be seen, up to a limit: in a matter
dominated Einstein-deSitter cosmological model with () that limit
is approximately (1.7) for binaries consisting of two
black holes. Cosmological tests based on catalogs of the
kind discussed here depend on the distribution of cataloged events with
and . The distributions found here will play a pivotal role in testing
cosmological models against our own universe and in constructing templates for
the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st
How leisure activities affect health: a narrative review and multi-level theoretical framework of mechanisms of action
There is a large and growing body of evidence on the health benefits of engagement in leisure activities (voluntary, enjoyable non-work activities, such as hobbies, arts, volunteering, community group membership, sports, and socialising). However, there is no unifying framework explaining how leisure activities affect health: what the mechanisms of action are by which engagement with leisure activities leads to the prevention, management, or treatment of mental and physical illness. In this Review, we identify and map over 600 mechanisms of action. These mechanisms can be categorised as psychological, biological, social, and behavioural processes that operate at individual (micro), group (meso), and societal (macro) levels, and are synthesised into a new theoretical framework: the Multi-level Leisure Mechanisms Framework. This framework situates understanding of leisure activities within the theoretical lens of complex adaptive systems and aims to support the design of more theory-driven, cross-disciplinary studies
Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array
The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, d_i = a/(b + i)^c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, d_(max). The result is a 10 mirror group design optimized for a flat even energy response both on and off-axis
Optimal detection of burst events in gravitational wave interferometric observatories
We consider the problem of detecting a burst signal of unknown shape. We
introduce a statistic which generalizes the excess power statistic proposed by
Flanagan and Hughes and extended by Anderson et al. The statistic we propose is
shown to be optimal for arbitrary noise spectral characteristic, under the two
hypotheses that the noise is Gaussian, and that the prior for the signal is
uniform. The statistic derivation is based on the assumption that a signal
affects only affects N samples in the data stream, but that no other
information is a priori available, and that the value of the signal at each
sample can be arbitrary. We show that the proposed statistic can be implemented
combining standard time-series analysis tools which can be efficiently
implemented, and the resulting computational cost is still compatible with an
on-line analysis of interferometric data. We generalize this version of an
excess power statistic to the multiple detector case, also including the effect
of correlated noise. We give full details about the implementation of the
algorithm, both for the single and the multiple detector case, and we discuss
exact and approximate forms, depending on the specific characteristics of the
noise and on the assumed length of the burst event. As a example, we show what
would be the sensitivity of the network of interferometers to a delta-function
burst.Comment: 21 pages, 5 figures in 3 groups. Submitted for publication to
Phys.Rev.D. A Mathematica notebook is available at
http://www.ligo.caltech.edu/~avicere/nda/burst/Burst.nb which allows to
reproduce the numerical results of the pape
Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion
A particle of mass moves on a circular orbit around a nonrotating black
hole of mass . Under the assumption the gravitational waves
emitted by such a binary system can be calculated exactly numerically using
black-hole perturbation theory. If, further, the particle is slowly moving,
then the waves can be calculated approximately analytically, and expressed in
the form of a post-Newtonian expansion. We determine the accuracy of this
expansion in a quantitative way by calculating the reduction in signal-to-noise
ratio incurred when matched filtering the exact signal with a nonoptimal,
post-Newtonian filter.Comment: 5 pages, ReVTeX, 1 figure. A typographical error was discovered in
the computer code used to generate the results presented in the paper. The
corrected results are presented in an Erratum, which also incorporates new
results, obtained using the recently improved post-Newtonian calculations of
Tanaka, Tagoshi, and Sasak
Development of thermally formed glass optics for astronomical hard x-ray telescopes
The next major observational advance in hard X-ray/soft gamma-ray astrophysics will come with the implementation of telescopes capable of focusing 10-200 keV radiation. Focusing allows high signal-to-noise imaging and spectroscopic observations of many sources in this band for the first time. The recent development of depth-graded multilayer coatings has made the design of telescopes for this bandpass practical, however the ability to manufacture inexpensive substrates with appropriate surface quality and figure to achieve sub-arcminute performance has remained an elusive goal. In this paper, we report on new, thermally-formed glass micro-sheet optics capable of meeting the requirements of the next-generation of astronomical hard X-ray telescopes
Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation
We self-consistently derive the magnetic energy and relative magnetic
helicity budgets of a three-dimensional linear force-free magnetic structure
rooted in a lower boundary plane. For the potential magnetic energy we derive a
general expression that gives results practically equivalent to those of the
magnetic Virial theorem. All magnetic energy and helicity budgets are
formulated in terms of surface integrals applied to the lower boundary, thus
avoiding computationally intensive three-dimensional magnetic field
extrapolations. We analytically and numerically connect our derivations with
classical expressions for the magnetic energy and helicity, thus presenting a
so-far lacking unified treatment of the energy/helicity budgets in the
constant-alpha approximation. Applying our derivations to photospheric vector
magnetograms of an eruptive and a noneruptive solar active regions, we find
that the most profound quantitative difference between these regions lies in
the estimated free magnetic energy and relative magnetic helicity budgets. If
this result is verified with a large number of active regions, it will advance
our understanding of solar eruptive phenomena. We also find that the
constant-alpha approximation gives rise to large uncertainties in the
calculation of the free magnetic energy and the relative magnetic helicity.
Therefore, care must be exercised when this approximation is applied to
photospheric magnetic field observations. Despite its shortcomings, the
constant-alpha approximation is adopted here because this study will form the
basis of a comprehensive nonlinear force-free description of the energetics and
helicity in the active-region solar corona, which is our ultimate objective.Comment: 44 pages, 8 figures, 2 tables. The Astrophysical Journal, in pres
- …