221 research outputs found
Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations
We study the dynamics of the five-parameter quadratic family of
volume-preserving diffeomorphisms of R^3. This family is the unfolded normal
form for a bifurcation of a fixed point with a triple-one multiplier and also
is the general form of a quadratic three-dimensional map with a quadratic
inverse. Much of the nontrivial dynamics of this map occurs when its two fixed
points are saddle-foci with intersecting two-dimensional stable and unstable
manifolds that bound a spherical ``vortex-bubble''. We show that this occurs
near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at
least in its normal form, an elliptic invariant circle. We develop a simple
algorithm to accurately compute these elliptic invariant circles and their
longitudinal and transverse rotation numbers and use it to study their
bifurcations, classifying them by the resonances between the rotation numbers.
In particular, rational values of the longitudinal rotation number are shown to
give rise to a string of pearls that creates multiple copies of the original
spherical structure for an iterate of the map.Comment: 53 pages, 29 figure
Resonances and Twist in Volume-Preserving Mappings
The phase space of an integrable, volume-preserving map with one action and
angles is foliated by a one-parameter family of -dimensional invariant
tori. Perturbations of such a system may lead to chaotic dynamics and
transport. We show that near a rank-one, resonant torus these mappings can be
reduced to volume-preserving "standard maps." These have twist only when the
image of the frequency map crosses the resonance curve transversely. We show
that these maps can be approximated---using averaging theory---by the usual
area-preserving twist or nontwist standard maps. The twist condition
appropriate for the volume-preserving setting is shown to be distinct from the
nondegeneracy condition used in (volume-preserving) KAM theory.Comment: Many typos fixed and notation simplified. New order
averaging theorem and volume-preserving variant. Numerical comparison with
averaging adde
Generalizations of the St\"ormer Problem for Dust Grain Orbits
We consider the generalized St\"ormer Problem that includes the
electromagnetic and gravitational forces on a charged dust grain near a planet.
For dust grains a typical charge to mass ratio is such that neither force can
be neglected. Including the gravitational force gives rise to stable circular
orbits that encircle that plane entirely above/below the equatorial plane. The
effects of the different forces are discussed in detail. A modified 3rd
Kepler's law is found and analyzed for dust grains.Comment: 21 pages LaTeX, 12 figure
Nonexistence of an integral of the 6th degree in momenta for the Zipoy-Voorhees metric
We prove nonexistence of a nontrivial integral that is polynomial in momenta
of degree less than 7 for the Zipoy-Voorhees spacetime with the parameter
Comment: 7 pages, no figure
The Lie-Poisson structure of the reduced n-body problem
The classical n-body problem in d-dimensional space is invariant under the
Galilean symmetry group. We reduce by this symmetry group using the method of
polynomial invariants. As a result we obtain a reduced system with a
Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The
reduction preserves the natural form of the Hamiltonian as a sum of kinetic
energy that depends on velocities only and a potential that depends on
positions only. Hence we proceed to construct a Poisson integrator for the
reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure
Vanishing Twist near Focus-Focus Points
We show that near a focus-focus point in a Liouville integrable Hamiltonian
system with two degrees of freedom lines of locally constant rotation number in
the image of the energy-momentum map are spirals determined by the eigenvalue
of the equilibrium. From this representation of the rotation number we derive
that the twist condition for the isoenergetic KAM condition vanishes on a curve
in the image of the energy-momentum map that is transversal to the line of
constant energy. In contrast to this we also show that the frequency map is
non-degenerate for every point in a neighborhood of a focus-focus point.Comment: 13 page
A Poincar\'e section for the general heavy rigid body
A general recipe is developed for the study of rigid body dynamics in terms
of Poincar\'e surfaces of section. A section condition is chosen which captures
every trajectory on a given energy surface. The possible topological types of
the corresponding surfaces of section are determined, and their 1:1 projection
to a conveniently defined torus is proposed for graphical rendering.Comment: 25 pages, 10 figure
Kolmogorov condition near hyperbolic singularities of integrable Hamiltonian systems
In this paper we show that, if an integrable Hamiltonian system admits a
nondegenerate hyperbolic singularity then it will satisfy the Kolmogorov
condegeneracy condition near that singularity (under a mild additional
condition, which is trivial if the singularity contains a fixed point)Comment: revised version, 11p, accepted for publication in a sepecial volume
in Regular and Chaotic Dynamics in honor of Richard Cushma
- …