1,266 research outputs found

    Topologically non-trivial quantum layers

    Full text link
    Given a complete non-compact surface embedded in R^3, we consider the Dirichlet Laplacian in a layer of constant width about the surface. Using an intrinsic approach to the layer geometry, we generalise the spectral results of an original paper by Duclos et al. to the situation when the surface does not possess poles. This enables us to consider topologically more complicated layers and state new spectral results. In particular, we are interested in layers built over surfaces with handles or several cylindrically symmetric ends. We also discuss more general regions obtained by compact deformations of certain layers.Comment: 15 pages, 6 figure

    Adiabatically switched-on electrical bias in continuous systems, and the Landauer-Buttiker formula

    Get PDF
    Consider a three dimensional system which looks like a cross-connected pipe system, i.e. a small sample coupled to a finite number of leads. We investigate the current running through this system, in the linear response regime, when we adiabatically turn on an electrical bias between leads. The main technical tool is the use of a finite volume regularization, which allows us to define the current coming out of a lead as the time derivative of its charge. We finally prove that in virtually all physically interesting situations, the conductivity tensor is given by a Landauer-B{\"u}ttiker type formula.Comment: 20 pages, submitte

    Tissue fusion over non-adhering surfaces

    Full text link
    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic non-adherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions

    Comparison of latching control strategies for a heaving wave energy device in random sea

    Get PDF
    International audienceThis paper investigates semi-analytically the latching control applied to a mechanical oscillator; and numerically three strategies of latching control for a point absorber wave energy converter oscillating in the heave mode only. By solving the equation of motion of a mechanical damped oscillator, it is shown that latching control can magnify the amplitude of the motion whatever the frequency of the excitation force, and how it can improve the efficiency of the system, in term of absorbed energy, for excitation frequencies apart from the natural frequency. Assuming that the excitation force is known in the close future and that the body is locked in position at the current time step, equations of motion of the body are solved numerically in the time domain fordifferent initial conditions (i.e. latching durations). For all these simulations, three criteria—one for each strategy—are tested and the latching time leading to the best result is selected. Time domainsimulation results are presented for a heaving buoy in small-amplitude regular and random waves. In regular waves, the same results as for the case of a mechanical oscillator are recovered for the wave energy converter. In random sea, results show that for all the three proposed strategies, efficiency of the wave energy converter is considerably improved in terms of absorbed energy. Numerical study of the period of the controlled system shows that the delay of prediction of the excitation force in the future seems to be bounded by the natural period of the system

    Bound States in Mildly Curved Layers

    Full text link
    It has been shown recently that a nonrelativistic quantum particle constrained to a hard-wall layer of constant width built over a geodesically complete simply connected noncompact curved surface can have bound states provided the surface is not a plane. In this paper we study the weak-coupling asymptotics of these bound states, i.e. the situation when the surface is a mildly curved plane. Under suitable assumptions about regularity and decay of surface curvatures we derive the leading order in the ground-state eigenvalue expansion. The argument is based on Birman-Schwinger analysis of Schroedinger operators in a planar hard-wall layer.Comment: LaTeX 2e, 23 page

    Universal topological phase of 2D stabilizer codes

    Full text link
    Two topological phases are equivalent if they are connected by a local unitary transformation. In this sense, classifying topological phases amounts to classifying long-range entanglement patterns. We show that all 2D topological stabilizer codes are equivalent to several copies of one universal phase: Kitaev's topological code. Error correction benefits from the corresponding local mappings.Comment: 4 pages, 3 figure

    H2 molecule in strong magnetic fields

    Full text link
    The Pauli-Hamiltonian of a molecule with fixed nuclei in a strong constant magnetic field is asymptotic, in norm-resolvent sense, to an effective Hamiltonian which has the form of a multi-particle Schr\"odinger operator with interactions given by one-dimensional \delta-potentials. We study this effective Hamiltonian in the case of the H2 -molecule and establish existence of the ground state. We also show that the inter-nuclear equilibrium distance tends to 0 as the field-strength tends to infinity

    Pulse-driven quantum dynamics beyond the impulsive regime

    Full text link
    We review various unitary time-dependent perturbation theories and compare them formally and numerically. We show that the Kolmogorov-Arnold-Moser technique performs better owing to both the superexponential character of correction terms and the possibility to optimize the accuracy of a given level of approximation which is explored in details here. As an illustration, we consider a two-level system driven by short pulses beyond the sudden limit.Comment: 15 pages, 5 color figure

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland
    corecore