33 research outputs found

    Identification of candidate genes for congenital splay leg in piglets by alternative analysis of DNA microarray data

    Get PDF
    The congenital splay leg syndrome in piglets is characterized by a temporarily impaired functionality of the hind leg muscles immediately after birth. Etiology and pathogenetic mechanisms for the disease are still not well understood. We compared genome wide gene expression of three hind leg muscles (M. adductores, M. gracilis and M. sartorius) between affected piglets and their healthy littermates with the GeneChip® Porcine Genome Array (Affymetrix) in order to identify candidate genes for the disease. Data analysis with standard algorithms revealed no significant differences between both groups. By application of an alternative approach, we identified 63 transcripts with differences in two muscles and 5 genes differing between the groups in three muscles. The expression of six selected genes (SQSTM1, SSRP1, DDIT4, ENAH, MAF, and PDK4) was investigated with SYBRGreen RT - Real time PCR. The differences obtained with the microarray analysis could be confirmed and demonstrate the validity of the alternative approach to microarray data analysis. Four genes with different expression levels in at least two muscles (SQSTM1, SSRP1, DDIT4, and MAF) are assigned to transcriptional cascades related to cell death and may thus indicate pathways for further investigations on congenital splay leg in piglets

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    Der Spontanpneumothorax

    No full text

    Der Spontanpneumothorax

    No full text

    Verf�rbung von Alkalihalogenidkristallen durch energiereiche Strahlung

    No full text

    Zur Photochemie in Alkalihalogenidkristallen

    No full text

    Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.

    No full text
    The objective of the present study was to compare genetic gain and inbreeding coefficients of dairy cattle in organic breeding program designs by applying stochastic simulations. Evaluated breeding strategies were: (i) selecting bulls from conventional breeding programs, and taking into account genotype by environment (G×E) interactions, (ii) selecting genotyped bulls within the organic environment for artificial insemination (AI) programs and (iii) selecting genotyped natural service bulls within organic herds. The simulated conventional population comprised 148 800 cows from 2976 herds with an average herd size of 50 cows per herd, and 1200 cows were assigned to 60 organic herds. In a young bull program, selection criteria of young bulls in both production systems (conventional and organic) were either 'conventional' estimated breeding values (EBV) or genomic estimated breeding values (GEBV) for two traits with low (h 2=0.05) and moderate heritability (h 2=0.30). GEBV were calculated for different accuracies (r mg), and G×E interactions were considered by modifying originally simulated true breeding values in the range from r g=0.5 to 1.0. For both traits (h 2=0.05 and 0.30) and r mg⩾0.8, genomic selection of bulls directly in the organic population and using selected bulls via AI revealed higher genetic gain than selecting young bulls in the larger conventional population based on EBV; also without the existence of G×E interactions. Only for pronounced G×E interactions (r g=0.5), and for highly accurate GEBV for natural service bulls (r mg>0.9), results suggests the use of genotyped organic natural service bulls instead of implementing an AI program. Inbreeding coefficients of selected bulls and their offspring were generally lower when basing selection decisions for young bulls on GEBV compared with selection strategies based on pedigree indices.peerReviewe

    Enlarging a training set for genomic selction by imputation of un-genotyped animals in populations of varying genetic architecture

    Get PDF
    BACKGROUND: The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped. METHODS: Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets. RESULTS: Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams. CONCLUSIONS: Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited
    corecore