55 research outputs found

    T cell-mediated hypersensitivity to quinolones: mechanisms and cross-reactivity

    No full text
    BACKGROUND: Quinolones are widely used, broad spectrum antibiotics that can induce immediate- and delayed-type hypersensitivity reactions, presumably either IgE or T cell mediated, in about 2-3% of treated patients. OBJECTIVE: To better understand how T cells interact with quinolones, we analysed six patients with delayed hypersensitivity reactions to ciprofloxacin (CPFX), norfloxacin (NRFX) or moxifloxacin (MXFX). METHODS: We confirmed the involvement of T cells in vivo by patch test and in vitro by means of the lymphocyte proliferation test (LTT). The nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones were investigated through the generation and analysis (flow cytometry and proliferation assays) of quinolone-specific T cell clones (TCC). RESULTS: The LTT confirmed the involvement of T cells because peripheral blood mononuclear cells (PBMC) mounted an enhanced in vitro proliferative response to CPFX and/or NRFX or MXFX in all patients. Patch tests were positive after 24 and 48 h in three out of the six patients. From two patients, CPFX- and MXFX-specific CD4(+)/CD8(+) T cell receptor (TCR) alphabeta(+) TCC were generated to investigate the nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones. The use of eight different quinolones as antigens (Ag) revealed three patterns of cross-reactivity: clones exclusively reacting with the eliciting drug, clones with a limited cross-reactivity and clones showing a broad cross-reactivity. The TCC recognized quinolones directly without need of processing and without covalent association with the major histocompatability complex (MHC)-peptide complex, as glutaraldehyde-fixed Ag-presenting cells (APC) could present the drug and washing quinolone-pulsed APC removed the drug, abrogating the reactivity of quinolone-specific TCC. CONCLUSION: Our data show that T cells are involved in delayed immune reactions to quinolones and that cross-reactivity among the different quinolones is frequent

    Drug interaction with T-cell receptors: T-cell receptor density determines degree of cross-reactivity

    No full text
    Background: Immune-mediated adverse reactions to drugs are often due to T-cell reactivity, and cross-reactivity is an important problem in pharmacotherapy. Objective: We investigated whether chemical inert drugs can stimulate T cells through their T-cell receptor (TCR) and analyzed the cross-reactivities to related compounds. Methods: We transfected human TCRs isolated from two drug-reactive T-cell clones (TCCs) by PCR into a TCR-negative mouse T-cell hybridoma. The TCCs were isolated from a patient with drug hypersensitivity to the antibacterial sulfonamide sulfamethoxazole (SMX). Results: The transfectants reacted to SMX only in the presence of antigen-presenting cells (APCs). Glutaraldehyde-fixed APCs, however, were sufficient to elicit T-cell stimulation, indicating a processing-independent direct interaction of the drug with the TCR and MHC molecule. The transfected hybridomas secreted IL-2 in a drug dose-dependent manner, whereas the degree of reactivity was dependent on the level of TCR expression. One transfectant reacted not only to SMX but also to related sulfonamide compounds. Interestingly, high TCR expression increased cross-reactivity to other structurally related compounds. In addition, SMX-specific TCR cross-reacted only with sulfonamides bearing a sulfanilamide core structure but not with sulfonamides such as celecoxib, furosemide, or glibenclamide. Conclusions: These results demonstrate that the T-cell reactivity to drugs is solely determined by the TCR. Moreover, these results show that cross-reactivity of structurally similar compounds correlates with the density of the TCR. Stably transfected T-cell hybridomas may represent a powerful screening tool for cross-reactivity of newly generated sulfonamide-containing compounds such as celecoxib

    Initiation of high-frequency oscillatory ventilation and its effects upon cerebral circulation in pigs: an experimental study

    No full text
    BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided
    • …
    corecore