424 research outputs found

    A Generalized Duality Transformation of the Anisotropic Xy Chain in a Magnetic Field

    Full text link
    We consider the anisotropic XYXY chain in a magnetic field with special boundary conditions described by a two-parameter Hamiltonian. It is shown that the exchange of the parameters corresponds to a similarity transformation, which reduces in a special limit to the Ising duality transformation.Comment: 6 pages, LaTeX, BONN-HE-93-4

    Reconstructed Rough Growing Interfaces; Ridgeline Trapping of Domain Walls

    Full text link
    We investigate whether surface reconstruction order exists in stationary growing states, at all length scales or only below a crossover length, lrecl_{\rm rec}. The later would be similar to surface roughness in growing crystal surfaces; below the equilibrium roughening temperature they evolve in a layer-by-layer mode within a crossover length scale lRl_{\rm R}, but are always rough at large length scales. We investigate this issue in the context of KPZ type dynamics and a checker board type reconstruction, using the restricted solid-on-solid model with negative mono-atomic step energies. This is a topology where surface reconstruction order is compatible with surface roughness and where a so-called reconstructed rough phase exists in equilibrium. We find that during growth, reconstruction order is absent in the thermodynamic limit, but exists below a crossover length lrec>lRl_{\rm rec}>l_{\rm R}, and that this local order fluctuates critically. Domain walls become trapped at the ridge lines of the rough surface, and thus the reconstruction order fluctuations are slaved to the KPZ dynamics

    Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals

    Full text link
    The staggered 6-vertex model describes the competition between surface roughening and reconstruction in (100) facets of CsCl type crystals. Its phase diagram does not have the expected generic structure, due to the presence of a fully-packed loop-gas line. We prove that the reconstruction and roughening transitions cannot cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong coupling scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface roughness much larger than the conventional universal value. It seems that additional fluctuations become critical simultaneously.Comment: 31 pages, 9 figure

    Anomalous Roughness in Dimer-Type Surface Growth

    Full text link
    We point out how geometric features affect the scaling properties of non-equilibrium dynamic processes, by a model for surface growth where particles can deposit and evaporate only in dimer form, but dissociate on the surface. Pinning valleys (hill tops) develop spontaneously and the surface facets for all growth (evaporation) biases. More intriguingly, the scaling properties of the rough one dimensional equilibrium surface are anomalous. Its width, WLαW\sim L^\alpha, diverges with system size LL, as α=1/3\alpha={1/3} instead of the conventional universal value α=1/2\alpha={1/2}. This originates from a topological non-local evenness constraint on the surface configurations.Comment: Published version in PR

    Crossover Scaling Functions in One Dimensional Dynamic Growth Models

    Full text link
    The crossover from Edwards-Wilkinson (s=0s=0) to KPZ (s>0s>0) type growth is studied for the BCSOS model. We calculate the exact numerical values for the k=0k=0 and 2π/N2\pi/N massgap for N18N\leq 18 using the master equation. We predict the structure of the crossover scaling function and confirm numerically that m04(π/N)2[1+3u2(s)N/(2π2)]0.5m_0\simeq 4 (\pi/N)^2 [1+3u^2(s) N/(2\pi^2)]^{0.5} and m12(π/N)2[1+u2(s)N/π2]0.5m_1\simeq 2 (\pi/N)^2 [1+ u^2(s) N/\pi^2]^{0.5}, with u(1)=1.03596967u(1)=1.03596967. KPZ type growth is equivalent to a phase transition in meso-scopic metallic rings where attractive interactions destroy the persistent current; and to endpoints of facet-ridges in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques

    Crossover from Isotropic to Directed Percolation

    Full text link
    Directed percolation is one of the generic universality classes for dynamic processes. We study the crossover from isotropic to directed percolation by representing the combined problem as a random cluster model, with a parameter rr controlling the spontaneous birth of new forest fires. We obtain the exact crossover exponent yDP=yT1y_{DP}=y_T-1 at r=1r=1 using Coulomb gas methods in 2D. Isotropic percolation is stable, as is confirmed by numerical finite-size scaling results. For D3D \geq 3, the stability seems to change. An intuitive argument, however, suggests that directed percolation at r=0r=0 is unstable and that the scaling properties of forest fires at intermediate values of rr are in the same universality class as isotropic percolation, not only in 2D, but in all dimensions.Comment: 4 pages, REVTeX, 4 epsf-emedded postscript figure

    Surface Incommensurate Structure in an Anisotropic Model with competing interactions on Semiinfinite Triangular Lattice

    Full text link
    An anisotropic spin model on a triangular semiinfinite lattice with ferromagnetic nearest-neighbour interactions and one antiferromagnetic next-nearest-neighbour interaction is investigated by the cluster transfer-matrix method. A phase diagram with antiphase, ferromagnetic, incommensurate, and disordered phase is obtained. The bulk uniaxial incommensurate structure modulated in the direction of the competing interactions is found between the antiphase and the disordered phase. The incommensurate structure near the surface with free and boundary condition is studied at different temperatures. Paramagnetic damping at the surface and enhancement of the incommensurate structure in the subsurface region at high temperatures and a new subsurface incommensurate structure modulated in two directions at low temperatures are found.Comment: 13 pages, plainTex, 11 figures, paper submitted to J. Phys.

    Dynamical correlations and quantum phase transition in the quantum Potts model

    Get PDF
    We present a detailed study of the finite temperature dynamical properties of the quantum Potts model in one dimension.Quasiparticle excitations in this model have internal quantum numbers, and their scattering matrix {\gf deep} in the gapped phases is shown to take a simple {\gf exchange} form in the perturbative regimes. The finite temperature correlation functions in the quantum critical regime are determined using conformal invariance, while {\gf far from the quantum critical point} we compute the decay functions analytically within a semiclassical approach of Sachdev and Damle [K. Damle and S. Sachdev, Phys. Rev. B \textbf{57}, 8307 (1998)]. As a consequence, decay functions exhibit a {\em diffusive character}. {\gf We also provide robust arguments that our semiclassical analysis carries over to very low temperatures even in the vicinity of the quantum phase transition.} Our results are also relevant for quantum rotor models, antiferromagnetic chains, and some spin ladder systems.Comment: 18 PRB pages added correction

    Nonlinear sigma model study of a frustrated spin ladder

    Full text link
    A model of two-leg spin-S ladder with two additional frustrating diagonal exchange couplings J_{D}, J_{D}' is studied within the framework of the nonlinear sigma model approach. The phase diagram has a rich structure and contains 2S gapless phase boundaries which split off the boundary to the fully saturated ferromagnetic phase when J_{D} and J_{D}' become different. For the S=1/2 case, the phase boundaries are identified as separating two topologically distinct Haldane-type phases discussed recently by Kim et al. (cond-mat/9910023).Comment: revtex 4 pages, figures embedded (psfig
    corecore