424 research outputs found
A Generalized Duality Transformation of the Anisotropic Xy Chain in a Magnetic Field
We consider the anisotropic chain in a magnetic field with special
boundary conditions described by a two-parameter Hamiltonian. It is shown that
the exchange of the parameters corresponds to a similarity transformation,
which reduces in a special limit to the Ising duality transformation.Comment: 6 pages, LaTeX, BONN-HE-93-4
Reconstructed Rough Growing Interfaces; Ridgeline Trapping of Domain Walls
We investigate whether surface reconstruction order exists in stationary
growing states, at all length scales or only below a crossover length, . The later would be similar to surface roughness in growing crystal
surfaces; below the equilibrium roughening temperature they evolve in a
layer-by-layer mode within a crossover length scale , but are always
rough at large length scales. We investigate this issue in the context of KPZ
type dynamics and a checker board type reconstruction, using the restricted
solid-on-solid model with negative mono-atomic step energies. This is a
topology where surface reconstruction order is compatible with surface
roughness and where a so-called reconstructed rough phase exists in
equilibrium. We find that during growth, reconstruction order is absent in the
thermodynamic limit, but exists below a crossover length , and that this local order fluctuates critically. Domain walls become
trapped at the ridge lines of the rough surface, and thus the reconstruction
order fluctuations are slaved to the KPZ dynamics
Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals
The staggered 6-vertex model describes the competition between surface
roughening and reconstruction in (100) facets of CsCl type crystals. Its phase
diagram does not have the expected generic structure, due to the presence of a
fully-packed loop-gas line. We prove that the reconstruction and roughening
transitions cannot cross nor merge with this loop-gas line if these degrees of
freedom interact weakly. However, our numerical finite size scaling analysis
shows that the two critical lines merge along the loop-gas line, with strong
coupling scaling properties. The central charge is much larger than 1.5 and
roughening takes place at a surface roughness much larger than the conventional
universal value. It seems that additional fluctuations become critical
simultaneously.Comment: 31 pages, 9 figure
Anomalous Roughness in Dimer-Type Surface Growth
We point out how geometric features affect the scaling properties of
non-equilibrium dynamic processes, by a model for surface growth where
particles can deposit and evaporate only in dimer form, but dissociate on the
surface. Pinning valleys (hill tops) develop spontaneously and the surface
facets for all growth (evaporation) biases. More intriguingly, the scaling
properties of the rough one dimensional equilibrium surface are anomalous. Its
width, , diverges with system size , as
instead of the conventional universal value . This originates
from a topological non-local evenness constraint on the surface configurations.Comment: Published version in PR
Crossover Scaling Functions in One Dimensional Dynamic Growth Models
The crossover from Edwards-Wilkinson () to KPZ () type growth is
studied for the BCSOS model. We calculate the exact numerical values for the
and massgap for using the master equation. We predict
the structure of the crossover scaling function and confirm numerically that
and , with . KPZ type growth is
equivalent to a phase transition in meso-scopic metallic rings where attractive
interactions destroy the persistent current; and to endpoints of facet-ridges
in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques
Crossover from Isotropic to Directed Percolation
Directed percolation is one of the generic universality classes for dynamic
processes. We study the crossover from isotropic to directed percolation by
representing the combined problem as a random cluster model, with a parameter
controlling the spontaneous birth of new forest fires. We obtain the exact
crossover exponent at using Coulomb gas methods in 2D.
Isotropic percolation is stable, as is confirmed by numerical finite-size
scaling results. For , the stability seems to change. An intuitive
argument, however, suggests that directed percolation at is unstable and
that the scaling properties of forest fires at intermediate values of are
in the same universality class as isotropic percolation, not only in 2D, but in
all dimensions.Comment: 4 pages, REVTeX, 4 epsf-emedded postscript figure
Surface Incommensurate Structure in an Anisotropic Model with competing interactions on Semiinfinite Triangular Lattice
An anisotropic spin model on a triangular semiinfinite lattice with
ferromagnetic nearest-neighbour interactions and one antiferromagnetic
next-nearest-neighbour interaction is investigated by the cluster
transfer-matrix method. A phase diagram with antiphase, ferromagnetic,
incommensurate, and disordered phase is obtained. The bulk uniaxial
incommensurate structure modulated in the direction of the competing
interactions is found between the antiphase and the disordered phase. The
incommensurate structure near the surface with free and boundary condition
is studied at different temperatures. Paramagnetic damping at the surface and
enhancement of the incommensurate structure in the subsurface region at high
temperatures and a new subsurface incommensurate structure modulated in two
directions at low temperatures are found.Comment: 13 pages, plainTex, 11 figures, paper submitted to J. Phys.
Dynamical correlations and quantum phase transition in the quantum Potts model
We present a detailed study of the finite temperature dynamical properties of
the quantum Potts model in one dimension.Quasiparticle excitations in this
model have internal quantum numbers, and their scattering matrix {\gf deep} in
the gapped phases is shown to take a simple {\gf exchange} form in the
perturbative regimes. The finite temperature correlation functions in the
quantum critical regime are determined using conformal invariance, while {\gf
far from the quantum critical point} we compute the decay functions
analytically within a semiclassical approach of Sachdev and Damle [K. Damle and
S. Sachdev, Phys. Rev. B \textbf{57}, 8307 (1998)]. As a consequence, decay
functions exhibit a {\em diffusive character}. {\gf We also provide robust
arguments that our semiclassical analysis carries over to very low temperatures
even in the vicinity of the quantum phase transition.} Our results are also
relevant for quantum rotor models, antiferromagnetic chains, and some spin
ladder systems.Comment: 18 PRB pages added correction
Nonlinear sigma model study of a frustrated spin ladder
A model of two-leg spin-S ladder with two additional frustrating diagonal
exchange couplings J_{D}, J_{D}' is studied within the framework of the
nonlinear sigma model approach. The phase diagram has a rich structure and
contains 2S gapless phase boundaries which split off the boundary to the fully
saturated ferromagnetic phase when J_{D} and J_{D}' become different. For the
S=1/2 case, the phase boundaries are identified as separating two topologically
distinct Haldane-type phases discussed recently by Kim et al.
(cond-mat/9910023).Comment: revtex 4 pages, figures embedded (psfig
- …