5,471 research outputs found

    Dark Energy and the Statistical Study of the Observed Image Separations of the Multiply Imaged Systems in the CLASS Statistical Sample

    Full text link
    The present day observations favour a universe which is flat, accelerated and composed of 1/3\sim 1/3 matter (baryonic + dark) and 2/3\sim 2/3 of a negative pressure component, usually referred to as dark energy or quintessence. The Cosmic Lens All Sky Survey (CLASS), the largest radio-selected galactic mass scale gravitational lens search project to date, has resulted in the largest sample suitable for statistical analyses. In the work presented here, we exploit observed image separations of the multiply imaged lensed radio sources in the sample. We use two different tests: (1) image separation distribution function n(Δθ)n(\Delta\theta) of the lensed radio sources and (2) {\dtheta}_{\mathrm{pred}} vs {\dtheta}_{\mathrm{obs}} as observational tools to constrain the cosmological parameters ww and \Om. The results are in concordance with the bounds imposed by other cosmological tests.Comment: 20 pages latex; Modified " Results and Discussion " section, new references adde

    Four Zero Texture Fermion Mass Matrices in SO(10) GUT

    Full text link
    We attempt the integration of the phenomenologically successful four zero texture of fermion mass matrices with the renormalizable SO(10) GUT. The resulting scenario is found to be highly predictive. Firstly, we examine the phenomenological implications of a class of the lepton mass matrices with parallel texture structures and obtain interesting constraints on the parameters of the charged lepton and the neutrino mass matrices. We combine these phenomenological constraints with the constraints obtained from SO(10) GUT to reduce the number of the free parameters and to further constrain the allowed ranges of the free parameters. The solar/atmospheric mixing angles obtained in this analysis are in fairly good agreement with the data.Comment: 14 pages, 3 figures, 1 tabl

    The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on a quark-gluon gas

    Full text link
    Based on quantum statistical mechanics we show that the SU(3)SU(3) color singlet ensemble of a quark-gluon gas exhibits a Z(3)Z(3) symmetry through the normaized character in fundamental representation and also becomes equivalent, within a stationary point approximation, to the ensemble given by Polyakov Loop. Also Polyakov Loop gauge potential is obtained by considering spatial gluons along with the invariant Haar measure at each space point. The probability of the normalized character in SU(3)SU(3) vis-a-vis Polyakov Loop is found to be maximum at a particular value exhibiting a strong color correlation. This clearly indicates a transition from a color correlated to uncorrelated phase or vise-versa. When quarks are included to the gauge fields, a metastable state appears in the temperature range 145T(MeV)170145\le T({\rm{MeV}}) \le 170 due to the explicit Z(3)Z(3) symmetry breaking in the quark-gluon system. Beyond T170T\ge 170 MeV the metastable state disappears and stable domains appear. At low temperature a dynamical recombination of ionized Z(3)Z(3) color charges to a color singlet Z(3)Z(3) confined phase is evident along with a confining background that originates due to circulation of two virtual spatial gluons but with conjugate Z(3)Z(3) phases in a closed loop. We also discuss other possible consequences of the center domains in the color deconfined phase at high temperature.Comment: Version published in J. Phys.

    Replicating Nanostructures on Silicon by Low Energy Ion Beams

    Get PDF
    We report on a nanoscale patterning method on Si substrates using self-assembled metal islands and low-energy ion-beam irradiation. The Si nanostructures produced on the Si substrate have a one-to-one correspondence with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the substrate. The surface morphology and the structure of the irradiated surface were studied by high-resolution transmission electron microscopy (HRTEM). TEM images of ion-beam irradiated samples show the formation of sawtooth-like structures on Si. Removing metal islands and the ion-beam induced amorphous Si by etching, we obtain a crystalline nanostructure of Si. The smallest structures emit red light when exposed to a UV light. The size of the nanostructures on Si is governed by the size of the self-assembled metal nanoparticles grown on the substrate for this replica nanopatterning. The method can easily be extended for tuning the size of the Si nanostructures by the proper choice of the metal nanoparticles and the ion energy in ion-irradiation. It is suggested that off-normal irradiation can also be used for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog

    Determining the CP properties of the Higgs boson

    Get PDF
    The search and the probe of the fundamental properties of Higgs boson(s) and, in particular, the determination of their charge conjugation and parity (CP) quantum numbers, is one of the main tasks of future high-energy colliders. We demonstrate that the CP properties of a Standard Model-like Higgs particle can be unambiguously assessed by measuring just the total cross section and the top polarization in associated Higgs production with top quark pairs in e+e- collisions.Comment: 4 pages, revtex, uses axodraw (style file included in the submission

    Compact anisotropic spheres with prescribed energy density

    Full text link
    New exact interior solutions to the Einstein field equations for anisotropic spheres are found. We utilise a procedure that necessitates a choice for the energy density and the radial pressure. This class contains the constant density model of Maharaj and Maartens (Gen. Rel. Grav., Vol 21, 899-905, 1989) and the variable density model of Gokhroo and Mehra (Gen. Rel. Grav., Vol 26, 75-84, 1994) as special cases. These anisotropic spheres match smoothly to the Schwarzschild exterior and gravitational potentials are well behaved in the interior. A graphical analysis of the matter variables is performed which points to a physically reasonable matter distribution.Comment: 22 pages, 3 figures, to appear in Gen. Rel. Gra

    Light propagation in nanorod arrays

    Get PDF
    We study propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as weak influence of their fluctuating diameter. For TM modes we outline the importance of skin-effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.Comment: 6 pages, 7 figure
    corecore