122,656 research outputs found

    Origin of the pseudogap and its influence on superconducting state

    Full text link
    When holes move in the background of strong antiferromagnetic correlation, two effects with different spatial scale emerge, leading to a much reduced hopping integral with an additional phase factor. An effective Hamiltonian is then proposed to investigate the underdoped cuprates. We argue that the pseudogap is the consequence of dressed hole moving in the antiferromagnetic background and has nothing to do with the superconductivity. The momentum distributions of the gap are qualitatively consistent with the recent ARPES measurements both in the pseudogap and superconducting state. Two thermal qualities are further calculated to justify our model. A two-gap scenario is concluded to describe the relation between the two gaps.Comment: 7 pages, 5 figure

    The stabilizer dimension of graph states

    Full text link
    The entanglement properties of a multiparty pure state are invariant under local unitary transformations. The stabilizer dimension of a multiparty pure state characterizes how many types of such local unitary transformations existing for the state. We find that the stabilizer dimension of an nn-qubit (n2n\ge 2) graph state is associated with three specific configurations in its graph. We further show that the stabilizer dimension of an nn-qubit (n3n\ge 3) graph state is equal to the degree of irreducible two-qubit correlations in the state.Comment: 4.2 pages, 4 figure

    Robust nonparametric estimation via wavelet median regression

    Get PDF
    In this paper we develop a nonparametric regression method that is simultaneously adaptive over a wide range of function classes for the regression function and robust over a large collection of error distributions, including those that are heavy-tailed, and may not even possess variances or means. Our approach is to first use local medians to turn the problem of nonparametric regression with unknown noise distribution into a standard Gaussian regression problem and then apply a wavelet block thresholding procedure to construct an estimator of the regression function. It is shown that the estimator simultaneously attains the optimal rate of convergence over a wide range of the Besov classes, without prior knowledge of the smoothness of the underlying functions or prior knowledge of the error distribution. The estimator also automatically adapts to the local smoothness of the underlying function, and attains the local adaptive minimax rate for estimating functions at a point. A key technical result in our development is a quantile coupling theorem which gives a tight bound for the quantile coupling between the sample medians and a normal variable. This median coupling inequality may be of independent interest.Comment: Published in at http://dx.doi.org/10.1214/07-AOS513 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonparametric regression in exponential families

    Get PDF
    Most results in nonparametric regression theory are developed only for the case of additive noise. In such a setting many smoothing techniques including wavelet thresholding methods have been developed and shown to be highly adaptive. In this paper we consider nonparametric regression in exponential families with the main focus on the natural exponential families with a quadratic variance function, which include, for example, Poisson regression, binomial regression and gamma regression. We propose a unified approach of using a mean-matching variance stabilizing transformation to turn the relatively complicated problem of nonparametric regression in exponential families into a standard homoscedastic Gaussian regression problem. Then in principle any good nonparametric Gaussian regression procedure can be applied to the transformed data. To illustrate our general methodology, in this paper we use wavelet block thresholding to construct the final estimators of the regression function. The procedures are easily implementable. Both theoretical and numerical properties of the estimators are investigated. The estimators are shown to enjoy a high degree of adaptivity and spatial adaptivity with near-optimal asymptotic performance over a wide range of Besov spaces. The estimators also perform well numerically.Comment: Published in at http://dx.doi.org/10.1214/09-AOS762 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore