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Nonparametric Regression in Exponential Families

Abstract
Most results in nonparametric regression theory are developed only for the case of additive noise. In such a
setting many smoothing techniques including wavelet thresholding methods have been developed and shown
to be highly adaptive. In this paper we consider nonparametric regression in exponential families with the
main focus on the natural exponential families with a quadratic variance function, which include, for example,
Poisson regression, binomial regression and gamma regression. We propose a unified approach of using a
mean-matching variance stabilizing transformation to turn the relatively complicated problem of
nonparametric regression in exponential families into a standard homoscedastic Gaussian regression problem.
Then in principle any good nonparametric Gaussian regression procedure can be applied to the transformed
data. To illustrate our general methodology, in this paper we use wavelet block thresholding to construct the
final estimators of the regression function. The procedures are easily implementable. Both theoretical and
numerical properties of the estimators are investigated. The estimators are shown to enjoy a high degree of
adaptivity and spatial adaptivity with near-optimal asymptotic performance over a wide range of Besov spaces.
The estimators also perform well numerically.
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NONPARAMETRIC REGRESSION IN EXPONENTIAL FAMILIES

BY LAWRENCE D. BROWN1, T. TONY CAI2 AND HARRISON H. ZHOU3

University of Pennsylvania, University of Pennsylvania and Yale University

Most results in nonparametric regression theory are developed only for
the case of additive noise. In such a setting many smoothing techniques in-
cluding wavelet thresholding methods have been developed and shown to be
highly adaptive. In this paper we consider nonparametric regression in ex-
ponential families with the main focus on the natural exponential families
with a quadratic variance function, which include, for example, Poisson re-
gression, binomial regression and gamma regression. We propose a unified
approach of using a mean-matching variance stabilizing transformation to
turn the relatively complicated problem of nonparametric regression in expo-
nential families into a standard homoscedastic Gaussian regression problem.
Then in principle any good nonparametric Gaussian regression procedure can
be applied to the transformed data. To illustrate our general methodology, in
this paper we use wavelet block thresholding to construct the final estimators
of the regression function. The procedures are easily implementable. Both
theoretical and numerical properties of the estimators are investigated. The
estimators are shown to enjoy a high degree of adaptivity and spatial adap-
tivity with near-optimal asymptotic performance over a wide range of Besov
spaces. The estimators also perform well numerically.

1. Introduction. Theory and methodology for nonparametric regression is
now well developed for the case of additive noise particularly additive ho-
moscedastic Gaussian noise. In such a setting many smoothing techniques includ-
ing wavelet thresholding methods have been developed and shown to be adaptive
and enjoy other desirable properties over a wide range of function spaces. How-
ever, in many applications the noise is not additive and the conventional methods
are not readily applicable. For example, such is the case when the data are counts
or proportions.

In this paper we consider nonparametric regression in exponential families with
the main focus on the natural exponential families with a quadratic variance func-
tion (NEF–QVF). These include, for example, Poisson regression, binomial re-
gression and gamma regression. We present a unified treatment of these regression
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problems by using a mean-matching variance stabilizing transformation (VST)
approach. The mean-matching VST turns the relatively complicated problem of
regression in exponential families into a standard homoscedastic Gaussian regres-
sion problem and then any good nonparametric Gaussian regression procedure can
be applied.

Variance stabilizing transformations and closely related normalizing transfor-
mations have been widely used in many parametric statistical inference problems.
See Hoyle (1973), Efron (1982) and Bar-Lev and Enis (1990). In the more standard
parametric problems, the goal of VST is often to optimally stabilize the variance.
That is, one desires the variance of the transformed variable to be as close to a con-
stant as possible. For example, Anscombe (1948) introduced VSTs for binomial,
Poisson and negative binomial distributions that provide the greatest asymptotic
control over the variance of the resulting transformed variables. In the context
of nonparametric function estimation, Anscombe’s variance stabilizing transfor-
mation has also been briefly discussed in Donoho (1993) for density estimation.
However, for our purposes it is much more essential to have optimal asymptotic
control over the bias of the transformed variables. A mean-matching VST mini-
mizes the bias of the transformed data while also stabilizing the variance.

Our procedure begins by grouping the data into many small size bins, and
by then applying the mean-matching VST to the binned data. In principle any
good Gaussian regression procedure could be applied to the transformed data to
construct the final estimator of the regression function. To illustrate our general
methodology, in this paper we employ two wavelet block thresholding procedures.
Wavelet thresholding methods have achieved considerable success in nonparamet-
ric regression in terms of spatial adaptivity and asymptotic optimality. In particular,
block thresholding rules have been shown to possess impressive properties. In the
context of nonparametric regression, local block thresholding has been studied,
for example, in Hall, Kerkyacharian and Picard (1998), Cai (1999, 2002) and Cai
and Silverman (2001). In this paper we shall use the BlockJS procedure proposed
in Cai (1999) and the NeighCoeff procedure introduced in Cai and Silverman
(2001). Both estimators were originally developed for nonparametric Gaussian re-
gression. BlockJS first divides the empirical coefficients at each resolution level
into nonoverlapping blocks and then simultaneously estimates all the coefficients
within a block by a James–Stein rule. NeighCoeff also thresholds the empirical
coefficients in blocks, but estimates wavelet coefficients individually. It chooses a
threshold for each coefficient by referencing not only to that coefficient but also
to its neighbors. Both estimators increase estimation accuracy over term-by-term
thresholding by utilizing information about neighboring coefficients.

Both theoretical and numerical properties of our estimators are investigated. It is
shown that the estimators enjoy excellent asymptotic adaptivity and spatial adap-
tivity. The procedure using BlockJS simultaneously attains the optimal rate of con-
vergence under the integrated squared error over a wide range of the Besov classes.
The estimators also automatically adapt to the local smoothness of the underlying
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function; they attain the local adaptive minimax rate for estimating functions at
a point. A key step in the technical argument is the use of the quantile coupling
inequality of Komlós, Major and Tusnády (1975) to approximate the binned and
transformed data by independent normal variables. The procedures are easy to im-
plement, at the computational cost of O(n). In addition to enjoying the desirable
theoretical properties, the procedures also perform well numerically.

Our method is applicable in more general settings. It can be extended to treat
nonparametric regression in general one-parameter natural exponential families.
The mean-matching VST only exists in NEF–QVF (see Section 2). In the gen-
eral case when the variance is not a quadratic function of the mean, we apply
the same procedure with the standard VST in place of the mean-matching VST.
It is shown that, under slightly stronger conditions, the same optimality results
hold in general. We also note that mean-matching VST transformations exist for
some useful nonexponential families, including some commonly used for mod-
eling “over-dispersed” data. Though we do not pursue the details in the present
paper, it appears that because of this our methods can also be effectively used for
nonparametric regressions involving such error distributions.

We should note that nonparametric regression in exponential families has been
considered in the literature. Among individual exponential families, the Poisson
case is perhaps the most studied. Besbeas, De Feis and Sapatinas (2004) provided
a review of the literature on the nonparametric Poisson regression and carried
out an extensive numerical comparison of several estimation procedures includ-
ing Donoho (1993), Kolaczyk (1999a, 1999b) and Fryźlewicz and Nason (2001).
In the case of Bernoulli regression, Antoniadis and Leblanc (2000) introduced a
wavelet procedure based on diagonal linear shrinkers. Unified treatments for non-
parametric regression in exponential families have also been proposed. Antoniadis
and Sapatinas (2001) introduced a wavelet shrinkage and modulation method for
regression in NEF–QVF and showed that the estimator attains the optimal rate over
the classical Sobolev spaces. Kolaczyk and Nowak (2005) proposed a recursive
partition and complexity-penalized likelihood method. The estimator was shown
to be within a logarithmic factor of the minimax rate under squared Hellinger loss
over Besov spaces.

The paper is organized as follows. Section 2 discusses the mean-matching vari-
ance stabilizing transformation for natural exponential families. In Section 3, we
first introduce the general approach of using the mean-matching VST to convert
nonparametric regression in exponential families into a nonparametric Gaussian
regression problem, and then present in detail specific estimation procedures based
on the mean-matching VST and wavelet block thresholding. Theoretical proper-
ties of the procedures are treated in Section 4. Section 5 investigates the numerical
performance of the estimators. We also illustrate our estimation procedures in the
analysis of two real data sets: a gamma-ray burst data set and a packet loss data
set. Technical proofs are given in Section 6.
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2. Mean-matching variance stabilizing transformation. We begin by con-
sidering variance stabilizing transformations (VST) for natural exponential fami-
lies. As mentioned in the Introduction, VST has been widely used in many contexts
and the conventional goal of VST is to optimally stabilize the variance. See, for
example, Anscombe (1948) and Hoyle (1973). For our purpose of nonparamet-
ric regression in exponential families, we shall first develop a new class of VSTs,
called mean-matching VSTs, which asymptotically minimize the bias of the trans-
formed variables while at the same time stabilizing the variance.

Let X1,X2, . . . ,Xm be a random sample from a distribution in a natural one-
parameter exponential families with the probability density/mass function

q(x|η) = eηx−ψ(η)h(x).

Here η is called the natural parameter. The mean and variance are, respectively,

μ(η) = ψ ′(η) and σ 2(η) = ψ ′′(η).

We shall denote the distribution by NEF(μ). A special subclass of interest is the
one with a quadratic variance function (QVF),

σ 2 ≡ V (μ) = a0 + a1μ + a2μ
2.(1)

In this case we shall write Xi ∼ NQ(μ). The NEF–QVF families consist of six
distributions, three continuous: normal, gamma and NEF–GHS distributions and
three discrete: binomial, negative binomial and Poisson. See, for example, Morris
(1982) and Brown (1986).

Set X = ∑m
i=1 Xi . According to the central limit theorem,

√
m

(
X/m − μ(η)

) L−→ N(0,V (μ(η))) as m → ∞.

A variance stabilizing transformation (VST) is a function G : R → R such that

G′(μ) = V −1/2(μ).(2)

The standard delta method then yields
√

m{G(X/m) − G(μ(η))} L−→ N(0,1).

It is known that the variance stabilizing properties can often be further improved
by using a transformation of the form

Hm(X) = G

(
X + a

m + b

)
(3)

with suitable choice of constants a and b. See, for example, Anscombe (1948). In
this paper we shall use the VST as a tool for nonparametric regression in exponen-
tial families. For this purpose, it is more important to optimally match the means
than to optimally stabilize the variance. That is, we wish to choose the constants a

and b such that E{Hm(X)} optimally matches G(μ(η)).
To derive the optimal choice of a and b, we need the following expansions for

the mean and variance of the transformed variable Hm(X).
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LEMMA 1. Let � be a compact set in the interior of the natural parameter
space. Then for η ∈ � and for constants a and b,

E{Hm(X)} − G(μ(η)) = 1

σ(η)

(
a − bμ(η) − μ′′(η)

4μ′(η)

)
· m−1 + O(m−2)(4)

and

Var{Hm(X)} = 1

m
+ O(m−2).(5)

Moreover, there exist constants a and b such that

E

{
G

(
X + a

m + b

)}
− G(μ(η)) = O(m−2)(6)

for all η ∈ � with a positive Lebesgue measure if and only if the exponential family
has a quadratic variance function.

The proof of Lemma 1 is given in Section 6. The last part of Lemma 1 can be
easily explained as follows. Equation (4) implies that (6) holds if and only if

a − bμ(η) − μ′′(η)

4μ′(η)
= 0,

that is, μ′′(η) = 4aμ′(η) − 4bμ(η)μ′(η). Solving this differential equation yields

σ 2(η) = μ′(η) = a0 + 4aμ(η) − 2bμ2(η)(7)

for some constant a0. Hence the solution of the differential equation is exactly the
subclass of natural exponential family with a quadratic variance function (QVF).

It follows from (7) that among the VSTs of the form (3) for the exponential
family with a quadratic variance function

σ 2 = a0 + a1μ + a2μ
2,

the best constants a and b for mean-matching are

a = 1
4a1 and b = −1

2a2.(8)

We shall call the VST (3) with the constants a and b given in (8) the mean-
matching VST. Lemma 1 shows that the mean-matching VST only exists in the
NEF–QVF families and with the mean-matching VST the bias E{G(X+a

m+b
)} −

G(μ(η)) is of the order (m−2). In contrast, for an NEF without a quadratic vari-
ance function, the term a−μ(η)b− μ′′(η)

4μ′(η)
does not vanish for all η with any choice

of a and b. And in this case the bias

E

{
G

(
X + a

m + b

)}
− G(μ(η)) = O(m−1)

instead of O(m−2) in (6). We shall see in Section 4 that this difference has impor-
tant implications for nonparametric regression in NEF.

The following are the specific expressions of the mean-matching VST Hm for
the five distributions (other than normal) in the NEF–QVF families:
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• Poisson: a = 1/4, b = 0 and Hm(X) = 2
√

(X + 1
4)/m.

• Binomial(r,p): a = 1/4, b = 1
2r

and Hm(X) = 2
√

r arcsin(
√

X+1/4
rm+1/2).

• Negative Binomial(r,p): a = 1/4, b = − 1
2r

and

Hm(X) = 2
√

r ln

(√
X + 1/4

mr − 1/2
+

√
1 + X + 1/4

mr − 1/2

)
.

• Gamma(r, λ) (with r known): a = 0, b = − 1
2r

and Hm(X) = √
r ln( X

rm−1/2).

• NEF–GHS(r, λ) (with r known): a = 0, b = − 1
2r

and

Hm(X) = √
r ln

(
X

rm − 1/2
+

√
1 + X2

(mr − 1/2)2

)
.

Note that the mean-matching VST is different from the more conventional VST
that optimally stabilizes the variance. Take the binomial distribution with r = 1 as

an example. In this case the VST is an arcsine transformation. Let X1, . . . ,Xm
i.i.d.∼

Bernoulli(p) and then X = ∑m
i=1 Xi ∼ Binomial(m,p). Figure 1 compares the

mean and variance of three arcsine transformations of the form

arcsin

(√
X + c

m + 2c

)
for the binomial variable X with m = 30. The choice of c = 0 gives the usual
arcsine transformation, c = 3/8 optimally stabilizes the variance asymptotically,

FIG. 1. Comparison of the mean (left panel) and variance (right panel) of the arcsine transforma-
tions for Binomial(30,p) with c = 0 (solid line), c = 1

4 (+ line) and c = 3
8 (dashed line).
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and c = 1/4 yields the mean-matching arcsine transformation. The left panel of
Figure 1 plots the bias

√
m

(
Ep arcsin

(√
(X + c)/(m + 2c)

) − arcsin
(√

p
))

as a function of p for c = 0, c = 1
4 and c = 3

8 . It is clear from the plot that c = 1
4

is the best choice among the three for matching the mean. On the other hand, the
arcsine transformation with c = 0 yields significant bias and the transformation
with c = 3

8 also produces noticeably larger bias. The right panel plots the variance
of

√
m arcsin(

√
(X + c)/(m + 2c)) for c = 0, c = 1

4 and c = 3
8 . Interestingly, over

a wide range of values of p near the center the arcsine transformation with c = 1
4 is

even slightly better than the case with c = 3
8 and clearly c = 0 is the worst choice

of the three. Figure 2 below shows similar behavior for the Poisson case.
Let us now consider the Gamma distribution with r = 1 as an example for the

continuous case. The VST in this case is a log transformation. Let X1, . . . ,Xm
i.i.d.∼

Exponential(λ). Then X = ∑m
i=1 Xi ∼ Gamma(m,λ). Figure 3 compares the mean

and variance of two log transformations of the form

ln
(

X

m − c

)
(9)

for the Gamma variable X with λ = 1 and m ranging from 3 to 40. The choice of
c = 0 gives the usual log transformation, and c = 1/2 yields the mean-matching
log transformation. The left panel of Figure 3 plots the bias as a function of m

for c = 0 and c = 1
2 . It is clear from the plot that c = 1

2 is a much better choice

FIG. 2. Comparison of the mean (left panel) and variance (right panel) of the root transformations
for Poisson(λ) with c = 0 (solid line), c = 1

4 (+ line) and c = 3
8 (dashed line).
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FIG. 3. Comparison of the mean (left panel) and variance (right panel) of the log transformations
for Gamma(m,λ) with c = 0 (solid line) and c = 1

2 (+ line).

than c = 0 for matching the mean. It is interesting to note that in this case there do
not exist constants a and b that optimally stabilize the variance. The right panel
plots the variance of

√
m ln(X), that is, c = 0, as a function of m. In this case, it

is obvious that the variances are the same with c = 0 and c = 1/2 for the variable
in (9).

REMARK 1. Mean-matching variance stabilizing transformations exist for
some other important families of distributions. We mention two that are com-
monly used to model “over-dispersed” data. The first family is often referred to
as the gamma-Poisson family. See, for example, Johnson, Kemp and Kotz (2005),

Berk and MacDonald (2008) and Hilbe (2007). Let Xi |Zi
ind∼ Poisson(Zi) with

Zi
ind∼ Gamma(α,σ ), i = 1, . . . ,m. The Zi are latent variables; only the Xi are ob-

served. The scale parameter, σ , is assumed known, and the mean μ = ασ is the
unknown parameter, 0 < μ < ∞. The resulting family of distributions of each Xi

is a subfamily of the negative Binomial (r,p) with p = (1+σ)−1, a fixed constant,
and r = μ/σ . [Here this negative Binomial family is defined for all r > 0 as hav-
ing probability function, P(k) = �(k+r)pr(1−p)k/�(k+1)�(r), k = 0,1, . . . .]
This is a one-parameter family, but it is not an exponential family. It can be verified
that a mean-matching variance stabilizing transformation for this family is given
by

Y = Hm(X) = 2

√
X

m
+ σ + 1

4m
.

This transformation has the desired properties (5) and (6) with G(μ) = 2
√

μ. For
the second family, consider the beta-binomial family. See Johnson, Kemp and Kotz
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(2005). Here, Xi |Zi
ind∼ Binomial(r,Zi) and Zi

ind∼ Beta(a, b), i = 1, . . . ,m. Again,
the Zi are latent variables; only the Xi are observed. For the family of interest
here, we assume a, b are allowed to vary so that a + b = k, a known constant,
and 0 < μ = a/(a + b) < 1. This family can alternatively be parameterized via
μ,σ = μ(1 − μ)/(k + 1). The resulting one-parameter family of distributions of
each Xi is again not a one-parameter exponential family. It can be verified that a
mean-matching variance stabilizing transformation for this family is given by

Y = Hm(X) = 2
√

r arcsin

√
X + (σ + 1)/4

rm + (σ + 1)/2
.

This transformation has the desired properties (5) and (6) with G(μ) = 2 ×
arcsin

√
μ.

3. Nonparametric regression in exponential families. We now turn to non-
parametric regression in exponential families. We begin with the NEF–QVF. Sup-
pose we observe

Yi
ind∼ NQ(f (ti)), i = 1, . . . , n, ti = i

n
,(10)

and wish to estimate the mean function f (t). In this setting, for the five NEF–QVF
families discussed in the last section the noise is not additive and non-Gaussian.
Applying standard nonparametric regression methods directly to the data {Yi} in
general do not yield desirable results. Our strategy is to use the mean-matching
VST to reduce this problem to a standard Gaussian regression problem based on a
sample {Ỹj : j = 1, . . . , T } where

Ỹj ∼ N(G(f (tj )),m
−1), tj = j/T , j = 1,2, . . . , T .

Here G is the VST defined in (2), T is the number of bins, and m is the number of
observations in each bin. The values of T and m will be specified later.

We begin by dividing the interval into T equi-length subintervals with m = n/T

observations in each subintervals. Let Qj be the sum of observations on the j th
subinterval Ij = [ j−1

T
,

j
T
), j = 1,2, . . . , T ,

Qj =
jm∑

i=(j−1)m+1

Yi.(11)

The sums {Qj } can be treated as observations for a Gaussian regression directly,
but this in general leads to a heteroscedastic problem. Instead, we apply the mean-
matching VST discussed in Section 2, and then treat Hm(Qj) as new observations
in a homoscedastic Gaussian regression problem. To be more specific, let

Y ∗
j = Hm(Qj) = G

(
Qj + a

m + b

)
, j = 1, . . . , T ,(12)
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where the constants a and b are chosen as in (8) to match the means. The trans-
formed data Y ∗ = (Y ∗

1 , . . . , Y ∗
T ) is then treated as the new equi-spaced sample for

a nonparametric Gaussian regression problem.
We will first estimate G(f (ti)), then take a transformation of the estimator to

estimate the mean function f . After the original regression problem is turned into
a Gaussian regression problem through binning and the mean-matching VST, in
principle any good nonparametric Gaussian regression method can be applied to
the transformed data {Y ∗

j } to construct an estimate of G(f (·)). The general ideas
for our approach can be summarized as follows.

1. Binning: divide {Yi} into T equal length intervals between 0 and 1. Let
Q1,Q2, . . . ,QT be the sum of the observations in each of the intervals. Later
results suggest a choice of T satisfying T 
 n3/4 for the NEF–QVF case and
T 
 n1/2 for the non-QVF case. See Section 4 for details.

2. VST: let Y ∗
j = Hm(Qj), j = 1, . . . , T , and treat Y ∗ = (Y ∗

1 , Y ∗
2 , . . . , Y ∗

T ) as the
new equi-spaced sample for a nonparametric Gaussian regression problem.

3. Gaussian regression: apply your favorite nonparametric regression procedure
to the binned and transformed data Y ∗ to obtain an estimate Ĝ(f ) of G(f ).

4. Inverse VST: estimate the mean function f by f̂ = G−1(Ĝ(f )). If Ĝ(f ) is not
in the domain of G−1 which is an interval between a and b (a and b can be
∞), we set G−1(Ĝ(f )) = G−1(a) if Ĝ(f ) < a and set G−1(Ĝ(f )) = G−1(b)

if Ĝ(f ) > b. For example, G−1(a) = 0 when a < 0 in the case of negative
Binomial and NEF–GHS distributions.

3.1. Effects of binning and VST. As mentioned earlier, after binning and the
mean-matching VST, one can treat the transformed data {Y ∗

j } as if they were data
from a homoscedastic Gaussian nonparametric regression problem. A key step in
understanding why this procedure works is to understand the effects of binning and
the VST. Quantile coupling provides an important technical tool to shed insights
on the procedure.

The following result, which is a direct consequence of the quantile coupling
inequality of Komlós, Major and Tusnády (1975), shows that the binned and trans-
formed data can be well approximated by independent normal variables.

LEMMA 2. Let Xi
i.i.d.∼ NQ(μ) with variance V for i = 1, . . . ,m and let

X = ∑m
i=1 Xi . Under the assumptions of Lemma 1, there exists a standard nor-

mal random variable Z ∼ N(0,1) and constants c1, c2, c3 > 0 not depending on
m such that whenever the event A = {|X − mμ| ≤ c1m} occurs,∣∣X − mμ − √

mV Z
∣∣ < c2Z

2 + c3.(13)

Hence, for large m, X can be treated as a normal random variable with mean
mμ and variance mV . Let Y = Hm(X) = G(X+a

m+b
), ε = EY − G(μ) and Z be a
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standard normal variable satisfying (13). Then Y can be written as

Y = G(μ) + ε + m−1/2Z + ξ,(14)

where

ξ = G

(
X + a

m + b

)
− G(μ) − ε − m−1/2Z.(15)

In the decomposition (14), ε is the deterministic approximation error between the
mean of Y and its target value G(μ) and ξ is the stochastic error measuring the
difference of Y and its normal approximation. It follows from Lemma 1 that when
m is large, ε is “small,” |ε| ≤ cm−2 for some constant c > 0. The following result,
which is proved in Section 6.1, shows that the random variable ξ is “stochastically
small.”

LEMMA 3. Let Xi
i.i.d.∼ NQ(μ) with variance V for i = 1, . . . ,m, and X =∑m

i=1 Xi . Let Z be the standard normal variable given as in Lemma 2 and let ξ

be given as in (15). Then for any integer k ≥ 1 there exists a constant Ck > 0 such
that for all λ ≥ 1 and all a > 0,

E|ξ |k ≤ Ckm
−k and P(|ξ | > a) ≤ Ck(am)−k.(16)

The discussion so far has focused on the effects of the VST for i.i.d. observa-
tions. In the nonparametric function estimation problem mentioned earlier, obser-
vations in each bin are independent but not identically distributed since the mean
function f is not a constant in general. However, through coupling, observations
in each bin can in fact be treated as if they were i.i.d. random variables when the
function f is smooth. Let Xi ∼ NQ(μi), i = 1, . . . ,m, be independent. Here the
means μi are “close” but not equal. Let μ be a value close to the μi’s. The analy-
sis given in Section 6.1 shows that Xi can in fact be coupled with i.i.d. random

variables Xi,c where Xi,c
i.i.d.∼ NQ(μ). See Lemma 4 in Section 6.1 for a precise

statement.
How well the transformed data {Y ∗

j } can be approximated by an ideal Gaussian
regression model depends partly on the smoothness of the mean function f . For
0 < d ≤ 1, define the Lipschitz class �d(M) by

�d(M) = {f : |f (t1) − f (t2)| ≤ M|t1 − t2|d0 ≤ t1, t2 ≤ 1}
and

Fd(M,ε, v) = {f :f ∈ �d(M),f (t) ∈ [ε, v], for all x ∈ [0,1]},
where [ε, v] with ε < v is a compact set in the interior of the mean parameter
space of the natural exponential family. Lemmas 1, 2, 3 and 4 together yield the
following result which shows how far away are the transformed data {Y ∗

j } from the
ideal Gaussian model.
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THEOREM 1. Let Y ∗
j = G(

Qj+a

m+b
) be given as in (12) and let f ∈ Fd(M,ε, v).

Then Y ∗
j can be written as

Y ∗
j = G

(
f

(
j

T

))
+ εj + m−1/2Zj + ξj , j = 1,2, . . . , T ,(17)

where Zj
i.i.d.∼ N(0,1), εj are constants satisfying |εj | ≤ c(m−2 + T −d) and con-

sequently for some constant C > 0

1

T

T∑
j=1

ε2
j ≤ C(m−4 + T −2d)(18)

and ξj are independent and “stochastically small” random variables satisfying
that for any integer k > 0 and any constant a > 0

E|ξj |k ≤ Ck log2k m · (m−k + T −dk) and
(19)

P(|ξj | > a) ≤ Ck log2k m · (m−k + T −dk)a−k,

where Ck > 0 is a constant depending only on k, d and M .

Theorem 1 provides explicit bounds for both the deterministic and stochastic
errors. This is an important technical result which serves as a major tool for the
proof of the main results given in Section 4.

REMARK 2. There is a tradeoff between the two terms in the bound (18) for
the overall approximation error 1

T

∑T
j=1 ε2

j . There are two sources to the approx-
imation error: one is the variation of the functional values within a bin and one
comes from the expansion of the mean of Y ∗

j (see Lemma 1). The former is re-
lated to the smoothness of the function f and is controlled by the T −2d term and
the latter is bounded by the m−4 term. In addition, there is the discretization error
between the sampled function {G(f (j/T )) : j = 1, . . . , T } and the whole function
G(f (t)), which is obviously a decreasing function of T . Furthermore, the choice
of T also affects the stochastic error ξ . A good choice of T makes all three types
of errors negligible relative to the minimax risk. See Section 4.2 for further discus-
sions.

REMARK 3. In Section 4 we introduce Besov balls Bα
p,q(M) for the analysis

of wavelet regression methods. A Besov ball Bα
p,q(M) can be embedded into a

Lipschitz class �d(M ′) with d = min(α − 1/p,1) and some M ′ > 0.

Although the main focus of this paper is on the NEF–QEF, our method of bin-
ning and VST can be extended to the general one-parameter NEF. This extension
is discussed in Section 4.1 where a version of Theorem 1 for the standard VST is
developed in the general case.
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3.2. Wavelet thresholding. One can apply any good nonparametric Gaussian
regression procedure to the transformed data {Y ∗

j } to construct an estimator of the
function f . To illustrate our general methodology, in the present paper we shall
use wavelet block thresholding to construct the final estimators of the regression
function. Before we can give a detailed description of our procedures, we need a
brief review of basic notation and definitions.

Let {φ,ψ} be a pair of father and mother wavelets. The functions φ and ψ are
assumed to be compactly supported and

∫
φ = 1, and dilation and translation of φ

and ψ generates an orthonormal wavelet basis. For simplicity in exposition, in the
present paper we work with periodized wavelet bases on [0,1]. Let

φ
p
j,k(t) =

∞∑
l=−∞

φj,k(t − l), ψ
p
j,k(t) =

∞∑
l=−∞

ψj,k(t − l) for t ∈ [0,1],

where φj,k(t) = 2j/2φ(2j t − k) and ψj,k(t) = 2j/2ψ(2j t − k). The collection
{φ

p
j0,k

, k = 1, . . . ,2j0;ψp
j,k, j ≥ j0 ≥ 0, k = 1, . . . ,2j } is then an orthonormal ba-

sis of L2[0,1], provided the primary resolution level j0 is large enough to en-
sure that the support of the scaling functions and wavelets at level j0 is not the
whole of [0,1]. The superscript “p” will be suppressed from the notation for con-
venience. An orthonormal wavelet basis has an associated orthogonal Discrete
Wavelet Transform (DWT) which transforms sampled data into the wavelet co-
efficients. See Daubechies (1992) and Strang (1992) for further details about the
wavelets and discrete wavelet transform. A square-integrable function f on [0,1]
can be expanded into a wavelet series:

f (t) =
2j0∑
k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑
k=1

θj,kψj,k(t),(20)

where θ̃j,k = 〈f,φj,k〉, θj,k = 〈f,ψj,k〉 are the wavelet coefficients of f .

3.3. Wavelet procedures for generalized regression. We now give a detailed
description of the wavelet thresholding procedures BlockJS and NeighCoeff in this
section and study the properties of the resulting estimators in Section 4. We shall
show that our estimators enjoy a high degree of adaptivity and spatial adaptivity
and are easily implementable.

Apply the discrete wavelet transform to the binned and transformed data Y ∗, and
let U = T −1/2WY ∗ be the empirical wavelet coefficients, where W is the discrete
wavelet transformation matrix. Write

U = (ỹj0,1, . . . , ỹj0,2j0 , yj0,1, . . . , yj0,2j0 , . . . , yJ−1,1, . . . , yJ−1,2J−1)
′.(21)

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k

(j = j0, . . . , J − 1, k = 1, . . . ,2j ) are empirical wavelet coefficients at level j
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which represent fine structure at scale 2j . The empirical wavelet coefficients can
then be written as

yj,k = θj,k + εj,k + 1√
n
zj,k + ξj,k,(22)

where θj,k are the true wavelet coefficients of G(f ), εj,k are “small” deterministic
approximation errors, zj,k are i.i.d. N(0,1), and ξj,k are some “small” stochastic
errors. The theoretical calculations given in Section 6 will show that both εj,k and
ξj,k are negligible. If these negligible errors are ignored then we have

yj,k ≈ θj,k + 1√
n
zj,k,(23)

which is the idealized Gaussian sequence model with noise level σ = 1/
√

n. Both
BlockJS [Cai (1999)] and NeighCoeff [Cai and Silverman (2001)] were originally
developed for this ideal model. Here we shall apply these methods to the empirical
coefficients yj,k as if they were observed as in (23).

We first describe the BlockJS procedure. At each resolution level j , the empiri-
cal wavelet coefficients yj,k are grouped into nonoverlapping blocks of length L.
As in the sequence estimation setting let Bi

j = {(j, k) : (i − 1)L + 1 ≤ k ≤ iL} and

let S2
j,i ≡ ∑

(j,k)∈Bi
j
y2
j,k . A modified James–Stein shrinkage rule is then applied to

each block Bi
j , that is,

θ̂j,k =
(

1 − λ∗L
nS2

j,i

)
+
yj,k for (j, k) ∈ Bi

j ,(24)

where λ∗ = 4.50524 is the solution to the equation λ∗ − logλ∗ = 3 [see Cai
(1999) for details], and 1

n
is approximately the variance of each yj,k . For the

gross structure terms at the lowest resolution level j0, we set ̂̃θj0,k = ỹj0,k . The
estimate of G(f (·)) at the equally spaced sample points { i

T
: i = 1, . . . , T } is

then obtained by applying the inverse discrete wavelet transform (IDWT) to the
denoised wavelet coefficients. That is, {G(f ( i

T
)) : i = 1, . . . , T } is estimated by

Ĝ(f ) = { ̂
G(f ( i

T
)) : i = 1, . . . , T } with Ĝ(f ) = T 1/2W−1 · θ̂ . The estimate of the

whole function G(f ) is given by

Ĝ(f (t)) =
2j0∑
k=1

̂̃θj0,kφj0,k(t) +
J−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t).

The mean function f is estimated by

f̂BJS(t) = G−1(Ĝ(f (t))).(25)

Figure 4 shows the steps of the procedure for an example in the case of nonpara-
metric Gamma regression.
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FIG. 4. An example of nonparametric Gamma regression using the mean-matching VST and
wavelet block thresholding.

We now turn to the NeighCoeff procedure. This procedure, introduced in Cai
and Silverman (2001) for Gaussian regression, incorporates information about
neighboring coefficients in a different way from the BlockJS procedure. Neigh-
Coeff also thresholds the empirical coefficients in blocks, but estimates wavelet
coefficients individually. It chooses a threshold for each coefficient by referencing
not only to that coefficient but also to its neighbors. As shown in Cai and Sil-
verman (2001), NeighCoeff outperforms BlockJS numerically, but with slightly
inferior asymptotic properties.

Let the empirical coefficients {yj,k} be given same as before. To estimate a co-
efficient θj,k at resolution level j , we form a block of size 3 by including the
coefficient yj,k together with its immediate neighbors yj,k−1 and yj,k+1. (If peri-
odic boundary conditions are not being used, then for the two coefficients at the
boundary blocks, again of length 3, are formed by only extending in one direction.)
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Estimate the coefficient θj,k by

θ̂j,k =
(

1 − 2 logn

nS2
j,k

)
+
yj,k,(26)

where S2
j,k = y2

j,k−1 + y2
j,k + y2

j,k+1. The gross structure terms at the lowest reso-

lution level are again estimated by ̂̃θj0,k = ỹj0,k . The rest of the steps are same as

before. Namely, the inverse DWT is applied to obtain an estimate Ĝ(f ) and the
mean function f is then estimated by f̂NC(t) = G−1(Ĝ(f (t))).

We can envision a sliding window of size 3 which moves one position each time
and only the middle coefficient in the center is estimated for a given window. Each
individual coefficient is thus shrunk by an amount that depends on the coefficient
and on its immediate neighbors. Note that NeighCoeff uses a lower threshold level
than the universal thresholding procedure of Donoho and Johnstone (1994). In
NeighCoeff, a coefficient is estimated by zero only when the sum of squares of
the empirical coefficient and its immediate neighbors is less than 2σ 2 logn, or the
average of the squares is less than 2

3σ 2 logn.

4. Theoretical properties. In this section we investigate the asymptotic prop-
erties of the procedures proposed in Section 3. Numerical results will be given in
Section 5.

We study the theoretical properties of our procedures over the Besov spaces that
are by now standard for the analysis of wavelet regression methods. Besov spaces
are a very rich class of function spaces and contain as special cases many tradi-
tional smoothness spaces such as Hölder and Sobolev spaces. Roughly speaking,
the Besov space Bα

p,q contains functions having α bounded derivatives in Lp norm,
the third parameter q gives a finer gradation of smoothness. Full details of Besov
spaces are given, for example, in Triebel (1992) and DeVore and Popov (1988).
A wavelet ψ is called r-regular if ψ has r vanishing moments and r continuous
derivatives. For a given r-regular mother wavelet ψ with r > α and a fixed primary
resolution level j0, the Besov sequence norm ‖ · ‖bα

p,q
of the wavelet coefficients

of a function f is then defined by

‖f ‖bα
p,q

= ‖ξ
j0

‖p +
( ∞∑

j=j0

(2js‖θj‖p)q

)1/q

,(27)

where ξ
j0

is the vector of the father wavelet coefficients at the primary resolution

level j0, θj is the vector of the wavelet coefficients at level j , and s = α + 1
2 −

1
p

> 0. Note that the Besov function norm of index (α,p, q) of a function f is
equivalent to the sequence norm (27) of the wavelet coefficients of the function.
See Meyer (1992). We define

Bα
p,q(M) = {f ; ‖f ‖bα

p,q
≤ M}(28)
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and

Fα
p,q(M,ε, v) = {f :f ∈ Bα

p,q(M),f (t) ∈ [ε, v] for all t ∈ [0,1]},(29)

where [ε, v] with ε < v is a compact set in the interior of the mean parameter space
of the natural exponential family.

The following theorem shows that our estimators achieve near optimal global
adaptation under integrated squared error for a wide range of Besov balls.

THEOREM 2. Suppose the wavelet ψ is r-regular. Let Xi ∼ NQ(f (ti)), i =
1, . . . , n, ti = i

n
. Let T = cn3/4. Then the estimator f̂BJS defined in (25) satisfies

sup
f ∈Fα

p,q (M,ε,v)

E‖f̂BJS − f ‖2
2 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Cn−(2α)/(1+2α),

p ≥ 2, α ≤ r and
3

2

(
α − 1

p

)
>

2α

1 + 2α
,

Cn−(2α)/(1+2α)(logn)(2−p)/(p(1+2α)),

1 ≤ p < 2, α ≤ r and
3

2

(
α − 1

p

)
>

2α

1 + 2α
,

and the estimator f̂NC satisfies

sup
f ∈Fα

p,q (M,ε,v)

E‖f̂NC − f ‖2
2 ≤ C

(
logn

n

)(2α)/(1+2α)

,

p ≥ 1, α ≤ r and
3

2

(
α − 1

p

)
>

2α

1 + 2α
.

REMARK 4. Note that when f (t) ∈ [ε, v], the condition f ∈ Bα
p,q(M) implies

that there exists M ′ > 0 such that G(f ) ∈ Bα
p,q(M

′) with

M ′ = c0 + cM

[�α�+1∑
l=1

clv
l−1 + c�α�+1

]
for some c > 0,

where cl = supy∈[ε,v] |G(l)(y)| with l = 0, . . . , �α� + 1, since it follows from The-
orem 3 on page 344 and Remark 3 on page 345 of Runst (1986) that

‖G(f )‖Bα
p,q

≤ ‖G(f )‖p

+ c‖f ‖Bα
p,q

[�α�+1∑
l=1

∥∥G(l)(f )
∥∥∞‖f ‖l−1∞ + ∥∥G�α�+1(f )

∥∥∞

]
.

REMARK 5. Simple algebra shows that 3
2(α − 1

p
) > 2α

1+2α
is equivalent to

2α2−α/3
1+2α

> 1
p

. This condition is needed to ensure that the discretization error over
the Besov ball Bα

p,q(M) is negligible relative to the minimax risk. See Section 4.2
for more discussions.
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For functions of spatial inhomogeneity, the local smoothness of the functions
varies significantly from point to point and global risk given in Theorem 2 can-
not wholly reflect the performance of estimators at a point. We use the local risk
measure

R(f̂ (t0), f (t0)) = E
(
f̂ (t0) − f (t0)

)2(30)

for spatial adaptivity.
The local smoothness of a function can be measured by its local Hölder smooth-

ness index. For a fixed point t0 ∈ (0,1) and 0 < α ≤ 1, define the local Hölder class
�α(M, t0, δ) as follows:

�α(M, t0, δ) = {f : |f (t) − f (t0)| ≤ M|t − t0|α, for t ∈ (t0 − δ, t0 + δ)}.
If α > 1, then

�α(M, t0, δ) = {
f :

∣∣f (�α�)(t) − f (�α�)(t0)
∣∣ ≤ M|t − t0|α′

for t ∈ (t0 − δ, t0 + δ)
}
,

where �α� is the largest integer less than α and α′ = α − �α�. Define

Fα(M, t0, δ, ε, v) = {f :f ∈ �α(M, t0, δ), f (x) ∈ [ε, v] for all x ∈ [0,1]}.
In Gaussian nonparametric regression setting, it is a well-known fact that for

estimation at a point, one must pay a price for adaptation. The optimal rate of
convergence for estimating f (t0) over function class �α(M, t0, δ) with α com-
pletely known is n−2α/(1+2α). Lepski (1990) and Brown and Low (1996) showed
that one has to pay a price for adaptation of at least a logarithmic factor. It is
shown that the local adaptive minimax rate over the Hölder class �α(M, t0, δ) is
(logn/n)2α/(1+2α).

The following theorem shows that our estimators achieve optimal local adapta-
tion with the minimal cost.

THEOREM 3. Suppose the wavelet ψ is r-regular with 1/6 < α ≤ r . Let t0 ∈
(0,1) be fixed. Let Xi ∼ NQ(f (ti)), i = 1, . . . , n, ti = i

n
. Let T = cn3/4. Then for

f̂ = f̂BJS or f̂NC

sup
Fα(M,t0,δ,ε,v)

E
(
f̂ (t0) − f (t0)

)2 ≤ C ·
(

logn

n

)(2α)/(1+2α)

.(31)

Theorem 3 shows that both estimators are spatially adaptive, without prior
knowledge of the smoothness of the underlying functions.

4.1. Regression in general natural exponential families. We have so far fo-
cused on the nonparametric regression in the NEF–QVF families. Our method can
be extended to the nonparametric regression in the general one-parameter natural
exponential families where the variance is no longer a quadratic function of the
mean.
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Suppose we observe

Yi
ind∼ NEF(f (ti)), i = 1, . . . , n, ti = i

n
,(32)

and wish to estimate the mean function f (t). When the variance is not a quadratic
function of the mean, the VST still exists, although the mean-matching VST does
not. In this case, we set a = b = 0 in (3) and define Hm as

Hm(X) = G

(
X

m

)
.(33)

We then apply the same four-step procedure, Binning–VST–Gaussian Regression–
Inverse VST, as outlined in Section 3 where either BlockJS or NeighCoeff is used
in the third step. Denote the resulting estimator by f̂BJS and f̂NC, respectively.

The following theorem is an extension of Theorem 1 to the general one-
parameter natural exponential families where the standard VST is used.

THEOREM 4. Let f ∈ Fd(M,ε, v). Then Y ∗
j = G(

Qj

m
) can be written as

Y ∗
j = G

(
f

(
j

T

))
+ εj + m−1/2Zj + ξj , j = 1,2, . . . , T ,(34)

where Zj
i.i.d.∼ N(0,1), εj are constants satisfying |εj | ≤ c(m−1 + T −d) and con-

sequently for some constant C > 0

1

T

T∑
j=1

ε2
j ≤ C(m−2 + T −2d)(35)

and ξj are independent and “stochastically small” random variables satisfying
that for any integer k > 0 and any constant a > 0

E|ξj |k ≤ Ck log2k m · (m−k + T −dk) and
(36)

P(|ξj | > a) ≤ Ck log2k m · (m−k + T −dk)a−k,

where Ck > 0 is a constant depending only on k, d and M .

The proof of Theorem 4 is similar to that of Theorem 1. Note that the bound for
the deterministic error in (35) is different from the one given in equation (18). This
difference affects the choice of the bin size.

THEOREM 5. Suppose the wavelet ψ is r-regular. Let Xi ∼ NEF(f (ti)), i =
1, . . . , n, ti = i

n
. Let T = cn1/2. Then the estimator f̂BJS satisfies

sup
f ∈Fα

p,q (M,ε,v)

E‖f̂BJS − f ‖2
2 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Cn−(2α)/(1+2α),

p ≥ 2, α ≤ r and
(
α − 1

p

)
>

2α

1 + 2α
,

Cn−(2α)/(1+2α)(logn)(2−p)/(p(1+2α)),

1 ≤ p < 2, α ≤ r and
(
α − 1

p

)
>

2α

1 + 2α
,
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and the estimator f̂NC satisfies

sup
f ∈Fα

p,q (M,ε,v)

E‖f̂NC − f ‖2
2 ≤ C

(
logn

n

)(2α)/(1+2α)

,

p ≥ 1, α ≤ r and
(
α − 1

p

)
>

2α

1 + 2α
.

REMARK 6. Note that the number of bins here is T = O(n1/2). This gives a
larger bin size than that needed with NEF–QVF. Because the VST yields higher
bias than the mean-matching VST in the case of NEF–QVF, it is necessary to use
larger bins. The condition (α− 1

p
) > 2α

1+2α
is also stronger than the condition 3

2(α−
1
p
) > 2α

1+2α
which is needed in the case of NEF–QVF. The functions are required

to be smoother than before. This is due to the fact that both the approximation
error and the discretization error are larger in this case. See Section 4.2 for more
discussions.

We have the following result on spatial adaptivity.

THEOREM 6. Suppose the wavelet ψ is r-regular with 1
2 < α ≤ r . Let t0 ∈

(0,1) be fixed. Let Xi ∼ NEF(f (ti)), i = 1, . . . , n, ti = i
n

. Let T = cn1/2. Then for
f̂ = f̂BJS or f̂NC

sup
f ∈Fα(M,t0,δ,ε,v)

E
(
f̂ (t0) − f (t0)

)2 ≤ C

(
logn

n

)(2α)/(1+2α)

.(37)

REMARK 7. In Remark 1 we noted that some nonexponential families admit
mean-matching variance stabilizing transformations. Although we do not pursue
the issue in the current paper, we believe that analogs of our procedure can be
developed for these families and the basic results in Theorems 2 and 3 can be
extended to such situations. A different possibility is that the error distributions lie
in a one parameter family that admits a VST that is not mean matching. In that
case one could expect analogs of Theorems 5 and 6 to be valid.

4.2. Discussion. Our procedure begins with binning. This step makes the data
more “normal” and at the same time reduces the number of observations from
n to T . This step in general does not affect the rate of convergence as long as
the underlying function has certain minimum smoothness so that the bias induced
by local averaging is negligible relative to the minimax estimation risk. While
the number of observations is reduced by binning, the noise level is also reduced
accordingly.



NONPARAMETRIC REGRESSION IN EXPONENTIAL FAMILIES 2025

An important quantity in our method is the value of T , the number of bins, or
equivalently the value of the bin size m. The choice of T = cn3/4 for the NEF–
QVF and T = cn1/2 for the general NEF are determined by the bounds for the ap-
proximation error, the discretization error, and the stochastic error. For functions
in the Besov ball Bα

p,q(M), the discretization error between the sampled func-
tion {G(f (j/T )) : j = 1, . . . , T } and the whole function G(f (t)) can be bounded
by CT −2d where d = (α − 1

p
) ∧ 1 (see Lemma 8 in Section 6.3). The approxi-

mation error 1
T

∑T
i=1 ε2

i can be bounded by C(m−4 + T −2d) as in (18). In order
to adaptively achieve the optimal rate of convergence, these deterministic errors
need to be negligible relative to the minimax rate of convergence n−(2α)/(1+2α)

for all α under consideration. That is, we need to have m−4 = o(n−(2α)/(1+2α))

and T −2d = o(n−(2α)/(1+2α)). These conditions put constraints on both m and
α (and p). We choose m = cn1/4 (or equivalently T = cn3/4) to ensure that the
approximation error is always negligible for all α. This choice also guarantees
that the stochastic error is under control. With this choice of m, we then need
3
2(α − 1

p
) > 2α

1+2α
or equivalently 2α2−α/3

1+2α
> 1

p
.

In the natural exponential family with a quadratic variance function, the ex-
istence of a mean-matching VST makes the approximation error small and this
provides advantage over more general natural exponential families. For general
NEF without a quadratic variance function, the approximation error 1

T

∑T
i=1 ε2

i is
of order m−2 + T −2d instead of m−4 + T −2d . Making it negligible for all α under
consideration requires m = cn1/2. With this choice of m, we require α − 1

p
> 2α

1+2α

or equivalently 2α2−α
1+2α

> 1
p

in order to control the discretization error. In particular,

this condition is satisfied if α ≥ 1 + 1
p

.
In this paper we present a unified approach to nonparametric regression in the

natural exponential families and the optimality results are given for Besov spaces.
As mentioned in the Introduction, a wavelet shrinkage and modulation method
was introduced in Antoniadis and Sapatinas (2001) for regression in the NEF–
QVF and it was shown that the estimator attains the optimal rate over the classical
Sobolev spaces with the smoothness index α > 1/2. In comparison to the results
given in Antoniadis and Sapatinas (2001), our results are more general in terms
of the function spaces as well as the natural exponential families. On the other
hand, we require slightly stronger conditions on the smoothness of the underlying
functions. It is intuitively clear that through binning and VST a certain amount of
bias is introduced. The conditions 3

2(α − 1
p
) > 2α

1+2α
in the case of NEF–QVF and

α − 1
p

> 2α
1+2α

in the general case are the minimum smoothness condition needed
to ensure that the bias is under control. The bias in the general NEF case is larger
and therefore the required smoothness condition is stronger.

5. Numerical study. In this section we study the numerical performance of
our estimators. The procedures introduced in Section 3 are easily implementable.
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We shall first consider simulation results and then apply one of our procedures in
the analysis of two real data sets.

5.1. Simulation results. As discussed the Section 2, there are several differ-
ent versions of the VST in the literature and we have emphasized the importance
of using the mean-matching VST for theoretical reasons. We shall now consider
the effect of the choice of the VST on the numerical performance of the resulting
estimator. To save space we only consider the Poisson and Bernoulli cases. We
shall compare the numerical performance of the mean-matching VST with those
of classical transformations by Bartlett (1936) and Anscombe (1948) using simu-
lations. The transformation formulae are given as follows. (In the following tables
and figures, we shall use MM for mean-matching.)

MM Bartlett Anscombe

Poi(λ)
√

X + 1/4
√

X
√

X + 3/8

Bin(m,p) sin−1
√

X+1/4
m+1/2 sin−1

√
X
m sin−1

√
X+3/8
m+3/4

Four standard test functions, Doppler, Bumps, Blocks and HeaviSine, repre-
senting different level of spatial variability are used for the comparison of the
three VSTs. See Donoho and Johnstone (1994) for the formulae of the four test
functions. These test functions are suitably normalized so that they are positive
and taking values between 0 and 1 (in the binomial case). Sample sizes vary from
a few hundred to a few hundred thousand. We use Daubechies’ compactly sup-
ported wavelet Symmlet 8 for wavelet transformation. As is the case in general, it
is possible to obtain better estimates with different wavelets for different signals.
But for uniformity, we use the same wavelet for all cases. Although our asymp-
totic theory only gives a justification for the choice of the bin size of order n1/4

due to technical reasons, our extensive numerical studies have shown that the pro-
cedure works well when the number of counts in each bin is between 5 and 10 for
the Poisson case, and similarly for the Bernoulli case the average number of suc-
cesses and failures in each bin is between 5 and 10. We follow this guideline in our
simulation study. Table 1 reports the average squared errors over 100 replications
for the BlockJS thresholding. The sample sizes are 1280,5120, . . . ,327,680 for
the Bernoulli case and 640,2560, . . . ,163,840 for the Poisson case. A graphical
presentation is given in Figure 5.

Table 1 compares the performance of three nonparametric function estima-
tors constructed from three VSTs and wavelet BlockJS thresholding for Bernoulli
and Poisson regressions. The three VSTs are the mean-matching, Bartlett and
Anscombe transformations given above. The results show the mean-matching VST
outperforms the classical transformations for nonparametric estimation in most
cases. The improvement becomes more significant as the sample size increases.
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TABLE 1
Mean squared error (MSE) from 100 replications. The MSE is in units of 10−3

for Bernoulli case and 10−2 for Poisson case

MM Bartlett Anscombe MM Bartlett Anscombe

Bernoulli

Doppler Bumps

1280 12.117 11.197 12.673 1280 7.756 8.631 7.896
5120 3.767 3.593 4.110 5120 7.455 7.733 7.768

20,480 1.282 1.556 1.417 20,480 3.073 3.476 3.450
81,920 0.447 0.772 0.540 81,920 1.203 1.953 1.485

327,680 0.116 0.528 0.169 327,680 0.331 1.312 0.535

Blocks HeaviSine

1280 18.451 17.171 18.875 1280 2.129 2.966 2.083
5120 7.582 6.911 7.996 5120 0.842 1.422 0.860

20,480 3.288 3.072 3.545 20,480 0.549 0.992 0.603
81,920 1.580 1.587 1.737 81,920 0.285 0.681 0.339

327,680 0.594 0.781 0.681 327,680 0.138 0.532 0.195

Poisson

Doppler Bumps

640 8.101 8.282 8.205 640 107.860 103.696 109.023
2560 3.066 3.352 3.160 2560 70.034 68.616 70.495

10,240 1.069 1.426 1.146 10,240 24.427 24.268 24.653
40,960 0.415 0.743 0.502 40,960 9.427 9.469 9.620

163,840 0.108 0.461 0.190 163840 3.004 3.098 3.204

Blocks HeaviSine

640 12.219 12.250 12.320 640 2.831 3.552 2.851
2560 5.687 6.209 5.724 2560 0.849 1.468 0.884

10,240 2.955 3.363 3.005 10,240 0.425 0.852 0.501
40,960 1.424 1.773 1.495 40,960 0.213 0.560 0.298

163,840 0.508 0.890 0.573 163,840 0.118 0.455 0.206

In the Poisson regression, the mean-matching VST outperforms the Bartlett
VST in 17 out of 20 cases and uniformly outperforms the Anscombe VST in all
20 cases. The case of Bernoulli regression is similar: the mean-matching VST is
better than the Bartlett VST in 15 out of 20 cases and better than the Anscombe
VST in 19 out of 20 cases. Although the mean-matching VST does not uniformly
dominate either the Bartlett VST or the Anscombe VST, the improvement of the
mean-matching VST over the other two VSTs is significant as the sample size in-
creases for all four test functions. The simulation results show that mean-matching
VST yields good numerical results in comparison to other VSTs. These numerical
findings is consistent with the theoretical results given in Section 4 which show that
the estimator constructed from the mean-matching VST enjoys desirable adaptiv-
ity properties.
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FIG. 5. Left panels: the vertical bars represent the ratios of the MSE of the estimator using the
Bartlett VST to the corresponding MSE of our estimator using the mean-matching VST. Right Panels:
the bars represent the ratios of the MSE of the estimator using the Anscombe VST to the correspond-
ing MSE of the estimator using the mean-matching VST. The higher the bar the better the relative
performance of our estimator. The bars are plotted on a log scale and the original ratios are trun-
cated at the value 3 for the Bartlett VST and at 2 for the Anscombe VST. For each signal the bars are
ordered from left to right in the order of increasing sample size. The top row is for the Bernoulli case
and the bottom row for the Poisson case.

Table 2 reports the average squared errors over 100 replications for the Neigh-
Coeff procedure in the same setting as those in Table 1. In comparison to BlockJS,
the numerical performance of NeighCoeff is overall slightly better. Among the
three VSTs, the mean-matching VST again outperforms both the Anscombe VST
and Bartlett VST.

We have so far considered the effect of the choice of VST on the performance
of the estimator. We now discuss the Poisson case in more detail and compare
the numerical performance of our procedure with other estimators proposed in
the literature. As mentioned in the Introduction, Besbeas, De Feis and Sapatinas
(2004) carried out an extensive simulation studies comparing several nonparamet-
ric Poisson regression estimators including the estimator given in Donoho (1993).
The estimator in Donoho (1993) was constructed by first applying the Anscombe
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TABLE 2
Mean squared error (MSE) from 100 replications for the NeighCoeff thresholding. The MSE is in

units of 10−3 for Bernoulli case and 10−2 for Poisson case

MM Bartlett Anscombe MM Bartlett Anscombe

Bernoulli

Doppler Bumps

1280 8.574 8.569 8.959 1280 7.085 7.741 7.361
5120 2.935 3.211 3.129 5120 6.810 7.052 7.180

20,480 1.029 1.380 1.143 20,480 2.846 3.364 3.204
81,920 0.377 0.800 0.438 81,920 0.958 1.789 1.220

327,680 0.138 0.556 0.186 327,680 0.264 1.274 0.458

Blocks HeaviSine

1280 14.838 13.964 15.336 1280 2.072 3.092 2.010
5120 7.129 6.615 7.511 5120 0.822 1.479 0.841

20,480 3.131 2.904 3.388 20,480 0.529 1.007 0.580
81,920 1.266 1.350 1.400 81,920 0.235 0.660 0.286

327,680 0.469 0.680 0.553 327,680 0.102 0.512 0.156

Poisson

Doppler Bumps

640 7.789 8.030 7.888 640 105.624 101.486 106.76
2560 3.112 3.398 3.200 2560 69.627 68.175 70.105

10,240 1.006 1.362 1.081 10,240 24.448 24.304 24.672
40,960 0.402 0.731 0.488 40,960 9.312 9.341 9.507

163,840 0.106 0.460 0.187 163,840 3.005 3.102 3.203

Blocks HeaviSine

640 12.301 12.141 12.412 640 2.679 3.465 2.672
2560 5.719 6.229 5.758 2560 0.903 1.427 0.977

10,240 2.985 3.363 3.046 10,240 0.429 0.852 0.505
40,960 1.399 1.755 1.469 40,960 0.215 0.562 0.300

163,840 0.504 0.877 0.572 163,840 0.120 0.453 0.209

(1948) VST to the binned data and by then using a wavelet procedure with a global
threshold such as VisuShrink [Donoho and Johnstone (1994)] to the transformed
data as if the data were actually Gaussian. Figure 6 plots the ratios of the MSE of
Donoho’s estimator to the corresponding MSE of our estimator. The results show
that our estimator outperforms Donoho’s estimator in all but one case and in many
cases our estimator has the MSE less than one half and sometimes even one third
of that of Donoho’s estimator.

Besbeas, De Feis and Sapatinas (2004) plotted simulation results of 27 proce-
dures for six intensity functions (Smooth, Angles, Clipped Blocks, Bumps, Spikes
and Bursts) with sample size 512 under the squared root of mean squared error
(RMSE). We apply NeighCoeff and BlockJS procedures to data with exactly the
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FIG. 6. The vertical bars represent the ratios of the MSE of Donoho’s estimator to the correspond-
ing MSE of our estimator. The higher the bar the better the relative performance of our estimator.
The bars are plotted on a log scale and the original ratios are truncated at the value 3. For each
signal the bars are ordered from left to right in the order of increasing sample size.

same intensity functions. The following table reports the RMSE of NeighCoeff
and BlockJS procedures based on 100 replications:

Smooth Angles Clipped blocks Bumps Spikes Bursts

NeighCoeff 1.773 2.249 5.651 4.653 2.096 2.591
BlockJS 1.760 2.240 6.492 5.454 2.315 2.853

We compare our results with the plots of RMSE for 27 methods in Besbeas, De
Feis and Sapatinas (2004). The NeighCoeff procedure dominates all 27 methods
for signals Smooth and Spikes, outperforms most of procedures for signals Angles
and Bursts, and performs slightly worse than average for signals Clipped Blocks
and Bumps. The BlockJS procedure is comparable with the NeighCoeff procedure
except for two signals Clipped Blocks and Bumps. We should note that an ex-
act numerical comparison here is difficult as the results in Besbeas, de Feis and
Sapatinas (2004) were given in plots, not numerical values.

5.2. Real data applications. We now demonstrate our estimation method in
the analysis of two real data sets, a gamma-ray burst data set (GRBs) and a packet
loss data set. These two data sets have been discussed in Kolaczyk and Nowak
(2005).

Cosmic gamma-ray bursts were first discovered in the late 1960s. In 1991,
NASA launched the Compton Gamma Ray Observatory and its Burst and Tran-
sient Source Explorer (BATSE) instrument, a sensitive gamma-ray detector. Much
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burst data has been collected since then, followed by extensive studies and many
important scientific discoveries during the past few decades; however, the source
of GRBs remains unknown [Kaneko (2005)]. For more details see the NASA web-
site http://www.batse.msfc.nasa.gov/batse/. GRBs seem to be connected to mas-
sive stars and become powerful probes of the star formation history of the uni-
verse. However not many redshifts are known and there is still much work to be
done to determine the mechanisms that produce these enigmatic events. Statisti-
cal methods for temporal studies are necessary to characterize their properties and
hence to identify the physical properties of the emission mechanism. One of the
difficulties in analyzing the time profiles of GRBs is the transient nature of GRBs
which means that the usual assumptions for Fourier transform techniques do not
hold [Quilligan et al. (2002)]. We may model the time series data by an inhomo-
geneous Poisson process, and apply our wavelet procedure. The data set we use
is called BATSE 551 with the sample size 7808. In Figure 7, the top panel is the
histogram of the data with 1024 bins such that the number of observations in each
bin would be between 5 and 10. In fact we have on average 7.6 observations. The

FIG. 7. Gamma-ray burst. Histogram of BATSE 551 with 1024 bins (top panel). Estimator based
on 1024 bin (middle panel). Estimator with 512 bins (bottom panel).

http://www.batse.msfc.nasa.gov/batse/
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middle panel is the estimate of the intensity function using our procedure. If we
double the width of each bin, that is, the total number of bins is now 512, the new
estimator in the bottom panel is noticeably different from previous one since it
does not capture the fine structure from time 200 to 300. The study of the number
of pulses in GRBs and their time structure is important to provide evidence for
rotation powered systems with intense magnetic fields and the added complexity
of a jet.

Packet loss describes an error condition in internet traffic in which data packets
appear to be transmitted correctly at one end of a connection, but never arrive at
the other. So, if 10 packets were sent out, but only 8 made it through, then there
would be 20% overall packet loss. The following data were originally collected
and analyzed by Yajnik et al. (1999). The objective is to understand packet loss
by modeling. It measures the reliability of a connection and is of fundamental
importance in network applications such as audio/video conferencing and Inter-
net telephony. Understanding the loss seen by such applications is important in
their design and performance analysis. The measurements are of loss as seen by
packet probes sent at regular time intervals. The packets were transmitted from
the University of Massachusetts at Amherst to the Swedish Institute of Computer
Science. The records note whether each packet arrived or was lost. It is a Bernoulli
time series, and can be naturally modeled as Binomial after binning the data. Fig-
ure 8 gives the histogram and our corresponding estimator. The average sum of

FIG. 8. Packet loss data. Histogram with 2048 bins (top panel). Estimator based on the binned
data (bottom panel).
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failures in each bin is about 10. The estimator in Kolaczyk and Nowak (2005) is
comparable to ours. But our procedure is more easily implemented.

6. Proofs. In this section we give proofs for Theorems 1, 2 and 5. Theorems 3
and 6 can be proved in a similar way as Theorem 4 in Brown, Cai and Zhou (2008)
by applying Proposition 1 in Section 6.3. We begin by proving Lemmas 1 and 3
as well as an additional technical result, Lemma 4. These results are needed to
establish Theorem 1 in which an approximation bound between our model and
a Gaussian regression model is given explicitly. Finally we apply Theorem 1 and
risk bounds for block thresholding estimators in Proposition 1 to prove Theorems 2
and 5.

6.1. Proof of preparatory technical results.

PROOF OF LEMMA 1. We only prove (4), the first part of the lemma. The
proof for equation (5), the second part, is similar and simpler. By Taylor’s expan-
sion we write

G

(
X + a

m + b

)
− G(μ(η)) = T1 + T2 + T3 + T4,

where

T1 = G′(μ(η))

(
X + a

m + b
− μ(η)

)
, T2 = 1

2
G′′(μ(η))

(
X + a

m + b
− μ(η)

)2

,

T3 = 1

6
G′′′(μ(η))

(
X + a

m + b
− μ(η)

)3

, T4 = 1

24
G(4)(μ∗)

(
X + a

m + b
− μ(η)

)4

and μ∗ is in between X+a
m+b

and μ(η). By definition, G′(μ(η)) = I (η)−1/2 with
I (η) = μ′(η) which is also V (μ(η)) in (2), then

G′′(μ(η))μ′(η) = −1
2I (η)−3/2I ′(η),

that is,

G′′(μ(η)) = −1
2I (η)−5/2I ′(η),

then

ET1 = I (η)−1/2 a − μ(η)b

m + b
,

ET2 = −1

4
I (η)−5/2I ′(η)

[(
a − μ(η)b

m + b

)2

+ mI (η)

(m + b)2

]
.
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Note that G′′(μ(η)) is uniformly bounded on � by the assumption in the lemma,
then we have

E(T1 + T2) = m

(m + b)2I (η)1/2

(
a − μ(η)b − μ′′(η)

4μ′(η)

)
+ O

(
1

m2

)
(38)

= 1

mI (η)1/2

(
a − μ(η)b − μ′′(η)

4μ′(η)

)
+ O

(
1

m2

)
.

It is easy to show that

|ET3| =
∣∣∣∣16G′′′(μ(η))E

(
X + a

m + b
− μ(η)

)3∣∣∣∣ = O

(
1

m2

)
,(39)

since |E(X/m − μ(η))3| = O( 1
m2 ). For any ε > 0 it is known that

P

{∣∣∣∣X + a

m + b
− μ(η)

∣∣∣∣ > ε

}
≤ P{|X/m − μ(η)| > ε/2},

which decays exponentially fast as m → ∞ [see, e.g., Petrov (1975)]. This implies
μ∗ is in the interior of the natural parameter space and then G(4)(μ∗) is bounded
with probability approaching to 1 exponentially fast. Thus we have

|ET4| ≤ CE

(
X + a

m + b
− μ(η)

)4

= O

(
1

m2

)
.(40)

Equation (4) then follows immediately by combining equations (38)–(40). �

PROOF OF LEMMA 2. The proof is similar to Corollary 1 of Zhou (2006).
Let X̃ = X−mμ√

mV
. It is shown in Komlós, Major and Tusnády (1975) that there ex-

ists a standard normal random variable Z ∼ N(0,1) and constants ε, c4 > 0 not
depending on m such that whenever the event A = {|X̃| ≤ ε

√
m} occurs,

|X̃ − Z| < c4√
m

+ c4√
m

X̃2.(41)

Obviously inequality (41) still holds when |X̃| ≤ ε1
√

m for 0 < ε1 ≤ ε. Let’s
choose ε1 small enough such that c4ε

2
1 < 1/2. When |X̃| ≤ ε1

√
m, we have

|X̃ − Z| ≤ c4√
m

+ 1
2 |X̃| from (41), which implies |X̃| − |Z| ≤ c4√

m
+ 1

2 |X̃| by the

triangle inequality, that is, |X̃| ≤ 2c4√
m

+ 2|Z|, so we have

|X̃ − Z| ≤ c4√
m

+ c4√
m

(
2c4√

m
+ 2|Z|

)2

≤ c2Z
2 + c3

for some constants c1, c2 > 0. �

PROOF OF LEMMA 3. By Taylor’s expansion we write

G

(
X + a

m + b

)
− G(μ) = G′(μ)

(
X + a

m + b
− μ

)
+ 1

2
G′′(μ∗)

(
X + a

m + b
− μ

)2

.
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Recall that |ε| = |EG(X+a
m+b

) − G(μ)| = O(m−2) from Lemma 1, and Z is a stan-
dard normal variable satisfying (13), and

ξ = G

(
X + a

m + b

)
− G(μ) − ε − m−1/2Z.(42)

We write ξ = ξ1 + ξ2 + ξ3, where

ξ1 = G′(μ)

(
X + a

m + b
− X

m

)
− ε = G′(μ)

am − bX

m(m + b)
− ε,

ξ2 = G′(μ)

(
X

m
− μ −

√
V

m
Z

)
= G′(μ)

m

(
X − mμ − √

mV Z
)
,

ξ3 = 1

2
G′′(μ∗)

(
X + a

m + b
− μ

)2

= 1

2
G′′(μ∗)

(
X − mμ

m + b
+ a − bμ

m + b

)2

.

It is easy to see that E|ξ1|k ≤ Ckm
−k . Since P{|X − mμ| ≥ c1m} is exponen-

tially small [cf. Komlós, Major and Tusnády (1975)], an application of Lemma 2
implies E|ξ2|k ≤ Ckm

−k . Note that on the event {|X − mμ| ≤ c1m}, G′′(μ∗)
is bounded for m sufficiently large, then E|ξ3|k ≤ Ckm

−k by observing that
E[(X − mμ)/

√
m]2k ≤ C′

k . The inequality E|ξ |k ≤ Ckm
−k then follows imme-

diately by combining the moments bounds for ξ1, ξ2 and ξ3. The second bound in
(16) is a direct consequence of the first one and Markov inequality. �

The variance stabilizing transformation considered in Section 2 is for i.i.d.
observations. In the function estimation procedure, observations in each bin are
independent but not identically distributed. However, observations in each bin
can be treated as i.i.d. random variables through coupling. Let Xi ∼ NQ(μi),
i = 1, . . . ,m, be independent. Here the means μi are “close” but not equal. Let
Xi,c be a set of i.i.d. random variables with Xi,c ∼ NQ(μc). We define

D = G

(∑m
i=1 Xi + a

m + b

)
− G

(∑m
i=1 Xi,c + a

m + b

)
.

If μc = maxi μi , it is easy to see ED ≤ 0 since Xi,c is stochastically larger than
Xi for all i [see, e.g., Lehmann and Romano (2005)]. Similarly, ED ≥ 0 when
μc = mini μi . We will select a

μ∗
c ∈

[
min

i
μi,max

i
μi

]
(43)

such that ED = 0, which is possible by the intermediate value theorem. In the fol-
lowing lemma we construct i.i.d. random variables Xi,c ∼ NQ(μ∗

c) on the sample
space of Xi such that D is very small and has negligible contribution to the final
risk bounds in Theorems 2 and 3.
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LEMMA 4. Let Xi ∼ NQ(μi), i = 1, . . . ,m, be independent with μi ∈ [ε, v],
a compact subset in the interior of the mean parameter space of the natural ex-
ponential family. Assume that |mini μi − maxi μi | ≤ Cδ. Then there are i.i.d. ran-
dom variables Xi,c where Xi,c ∼ NQ(μ∗

c) with μ∗
c ∈ [mini μi,maxi μi] such that

ED = 0 and:

(i)

P({Xi �= Xi,c}) ≤ Cδ;(44)

(ii) and for any fixed integer k ≥ 1 there exists a constant Ck > 0 such that for
all a > 0,

E|D|k ≤ Ck log2k m · (m−k + δ−k) and
(45)

P(|D| > a) ≤ Ck

log2k m

ak
(m−k + δ−k).

PROOF. (i) There is a classical coupling identity for the Total variation dis-
tance. Let P and Q be distributions of two random variables X and Y on the
same sample space, respectively, then there is a random variable Yc with distribu-
tion Q such that P(X �= Yc) = |P − Q|TV. See, for example, page 256 in Pollard
(2002). The proof of inequality (44) follows from that identity and the inequality
that |NQ(μi) − NQ(μ∗

c)|TV ≤ C|μi − μ∗
c | for some C > 0 which only depends on

the family of the distribution of Xi and [ε, v].
(ii) Using Taylor’s expansion we can rewrite D as D = G′(ζ )

∑m
i=1(Xi−Xi,c)

m+b
for

some ζ in between
∑m

i=1 Xi+a

m+b
and

∑m
i=1 Xi,c+a

m+b
. Since the distribution Xi is in expo-

nential family, then P(maxi |Xi − Xi,c| > log2 m) ≤ Ck′m−k′
for all k′ > 0, which

implies E|Xi − Xi,c|k ≤ Ckδ log2k m fo all positive integer k. Since Xi − Xi,c are
independent, it can be shown that

E

(
1

m

m∑
i=1

|Xi − Xi,c|
)k

≤ 1

mk

∑
k1+···+km=k

(
k

k1, . . . , km

)
E|X1 − X1,c|k1

1 · · ·E|Xm − Xm,c|km
m

= 1

mk

k∑
j=1

∑
k1+···+km=k,

Card{i,ki≥1}=j

(
k

k1, . . . , km

)
E|X1 − X1,c|k1

1 · · ·E|Xm − Xm,c|km
m

≤ Ck

log2k m

mk

k∑
j=1

δj · Card
{
(k1, . . . , km) :k1 + · · · + km = k,

Card{i, ki ≥ 1} = j
}



NONPARAMETRIC REGRESSION IN EXPONENTIAL FAMILIES 2037

≤ C′
k

log2k m

mk

(
k∑

j=1

mjδj

)
= C′

k log2k m

(
k∑

j=1

mj−kδj

)
,

where the last inequality follows from the facts that k is fixed and finite and

Card
{
(k1, . . . , km) :k1 + · · · + km = k,Card{i, ki ≥ 1} = j

}
=

(
m

j

)
Card{(k1, . . . , kj ) :k1 + · · · + kj = k, ki ≥ 1}

≤
(

m

j

)
kk ≤ mjkk.

Note that m−k+δk

mj−kδj = 1
(mδ)j

+ (mδ)k−j ≥ 1 for all k ≥ j ≥ 1, then

E

(
1

m

m∑
i=1

|Xi − Xi,c|
)k

≤ C′′
k log2k m · (m−k + δk).

Thus the first inequality in (45) follows immediately by observing that G′(ζ ) is
bounded with a probability approaching to 1 exponentially fast. The second bound
is an immediate consequence of the first one and Markov inequality. �

REMARK 8. The unknown function f in a Besov ball Bα
p,q(M) has Hölder

smoothness d = min(α − 1
p
,1), then δ in Lemma 4 can be chosen to be T −d . The

standard deviation of normal noise in equation (17) is 1/
√

m. From the assump-
tions in Theorems 2 or 3 we see m1/2T −d log2 m converges to 0 as a power of n,
then

P
(|D| > 1/

√
m

)
≤ Ck

[
(m−1/2 log2 m)m−k + (√

mT −d log2 m
)k] for all k ≥ 1,

which converges to 0 faster than any polynomial of m. This implies the contribu-
tion of D to the final risk bounds in all major theorems is negligible as shown in
later sections.

6.2. Proof of Theorem 1. From Lemma 4, there exist Y ∗
j,c where Xi,c ∼

NQ(f ∗
j ) with

f ∗
j,c ∈

[
min

jm+1≤i≤(j+1)m
f

(
i

n

)
, max
jm+1≤i≤(j+1)m

f

(
i

n

)]
as in (43) such that

E[Y ∗
j − Y ∗

j,c] = 0,(46)

E|Y ∗
j − Y ∗

j,c|k ≤ Ck log2k m · (m−k + T −dk),(47)

P(|Y ∗
j − Y ∗

j,c| > a) ≤ Ck

log2k m

ak
(m−k + T −dk).(48)
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Lemmas 1, 2 and 3 together yield

Y ∗
j,c = G(f ∗

j,c) + εj + m−1/2Zj + ξj , j = 1,2, . . . , T ,(49)

and

|εj | ≤ Cm−2, E|ξj |k ≤ Ckm
−k and P(|ξj | > a) ≤ Ck(am)−k.(50)

Note that ∣∣∣∣G(f ∗
j,c) − G

(
f

(
j

T

))∣∣∣∣ ≤ CT −d .(51)

Theorem 1 then follows immediately by combining equations (46)–(51).

6.3. Risk bound for wavelet thresholding. We collect here a few technical re-
sults that are useful for the proof of the main theorems. We begin with the fol-
lowing moment bounds for an orthogonal transform of independent variables. See
Brown et al. (2010) for a proof.

LEMMA 5. Let X1, . . . ,Xn be independent variables with E(Xi) = 0 for
i = 1, . . . , n. Suppose that E|Xi |k < Mk for all i and all k > 0 with Mk > 0
some constant not depending on n. Let Y = WX be an orthogonal transform of
X = (X1, . . . ,Xn)

′. Then there exist constants M ′
k not depending on n such that

E|Yi |k < M ′
k for all i = 1, . . . , n and all k > 0.

Lemma 6 below provides an oracle inequality for block thresholding estimators
without the normality assumption.

LEMMA 6. Suppose yi = θi + zi, i = 1, . . . ,L, where θi are constants and zi

are random variables. Let S2 = ∑L
i=1 y2

i and let θ̂i = (1 − λL
S2 )+yi . Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E[‖z‖2
2I (‖z‖2

2 > λL)].(52)

PROOF. It is easy to verify that ‖θ̂ − y‖2
2 ≤ λL. Hence

E[‖θ̂ − θ‖2
2I (‖z‖2

2 > λL)]
≤ 2E[‖θ̂ − y‖2

2I (‖z‖2
2 > λL)] + 2E[‖y − θ‖2

2I (‖z‖2
2 > λL)]

(53)
≤ 2λLP(‖z‖2

2 > λL) + 2E[‖z‖2
2I (‖z‖2

2 > λL)]
≤ 4E[‖z‖2

2I (‖z‖2
2 > λL)].

On the other hand,

E[‖θ̂ − θ‖2
2I (‖z‖2

2 ≤ λL)]
(54)

≤ E[(2‖θ̂ − y‖2
2 + 2‖y − θ‖2

2)I (‖z‖2
2 ≤ λL)] ≤ 4λL.
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Note that when S2 ≤ λL, θ̂ = 0 and hence ‖θ̂ − θ‖2
2 = ‖θ‖2

2. When ‖z‖2
2 ≤ λL and

S2 > λL,

‖θ̂ − θ‖2
2 = ∑

i

[(
1 − λL

S2

)
yi − θi

]2

=
(

1 − λL

S2

)[
S2 − λL − 2

∑
i

θiyi

]
+ ‖θ‖2

2

=
(

1 − λL

S2

)[∑
(θi + zi)

2 − λL − 2
∑
i

θi(θi + zi)

]
+ ‖θ‖2

2

=
(

1 − λL

S2

)
(‖z‖2

2 − λL − ‖θ‖2
2) + ‖θ‖2

2 ≤ ‖θ‖2
2.

Hence E[‖θ̂ − θ‖2
2I (‖z‖2

2 ≤ λL)] ≤ ‖θ‖2
2 and ( 52) follows by combining this with

(53) and (54). �

The following bounds concerning a central chi-square distribution are from Cai
(2002).

LEMMA 7. Let X ∼ χ2
L and λ > 1. Then

P(X ≥ λL) ≤ e−L/2(λ−logλ−1) and
(55)

EXI (X ≥ λL) ≤ λLe−L/2(λ−logλ−1).

From (17) in Theorem 1 we can write 1√
T
Y ∗

i = G(f (i/T ))√
T

+ εi√
T

+ Zi√
n

+ ξi√
T

.
Let (uj,k) = T −1/2W · Y ∗ be the discrete wavelet transform of the binned and
transformed data. Then one may write

uj,k = θ ′
j,k + εj,k + 1√

n
zj,k + ξj,k,(56)

where θ ′
jk are the discrete wavelet transform of (G(f (i/T ))/

√
T ) which are ap-

proximately equal to the true wavelet coefficients of G(f ), zj,k are the transform
of the Zi’s and so are i.i.d. N(0,1) and εj,k and ξj,k are, respectively, the trans-
forms of ( εi√

T
) and (

ξi√
T
). Then it follows from Theorem 1 that

∑
j

∑
k

ε2
j,k = 1

T

∑
i

ε2
i ≤ C(m−4 + T −2d)(57)

and for all i > 0 and a > 0 we have

E|ξj,k|i ≤ C′
i log2k m

[
(mn)−i/2 + T −(d+1/2)i],

(58)
P(|ξj,k| > a) ≤ C′

i log2k m[(a2mn)−i/2 + (aT d+1/2)−i]
from Theorem 1 and Lemma 5.

Lemmas 6 and 7 together yield the following result on the risk bound for a
single block.
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PROPOSITION 1. Let the empirical wavelet coefficients uj,k = θ ′
j,k + εj,k +

1√
n
zj,k + ξj,k be given as in (56) and let the block thresholding estimator θ̂j,k be

defined as in (24). Then:

(i) for some constant C > 0,

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ ′
j,k)

2 ≤ min
{

4
∑

(j,k)∈Bi
j

(θ ′
j,k)

2,8λ∗Ln−1
}

(59)
+ 6

∑
(j,k)∈Bi

j

ε2
j,k + CLn−2;

(ii) for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such
that for all (j, k) ∈ Bi

j ,

E(θ̂j,k − θ ′
j,k)

2 ≤ Cτ · min
{

max
(j,k)∈Bi

j

{(θ ′
j,k + εj,k)

2},Ln−1
}

+ n−2+τ .(60)

The following is a standard bound for wavelet approximation error. It follows
directly from Lemma 1 in Cai (2002).

LEMMA 8. Let T = 2J and d = min(α − 1
p
,1). Set

ḡJ (x) =
T∑

k=1

1√
T

G
(
f (k/n)

)
φJ,k(x).

Then for some constant C > 0

sup
g∈Fα

p,q (M,ε)

‖ḡJ − G(f )‖2
2 ≤ CT −2d .(61)

We are now ready to prove our main results, Theorems 2 and 5.

6.4. Proofs of Theorems 2 and 5. We shall only prove the results for the esti-
mator f̂BJS. The proof for f̂NC is similar and simpler. Let G̃(f ) = max{Ĝ(f ),0}
for negative Binomial and NEF–GHS distributions and G̃(f ) = Ĝ(f ) for other
four distributions. We have

E‖f̂ − f ‖2
2 = E‖G−1[G̃(f )] − G−1[G(f )]‖2

2 = E‖(G−1)′(g)[G̃(f ) − G(f )]‖2
2

≤ E

∫
V (G−1(g))[Ĝ(f ) − G(f )]2 dt,

where g is a function in between G̃(f ) and G(f ). We will first give a lemma which
implies V (G−1(g)) is bounded with high probability, then prove Theorems 2 and 5
by establishing a risk bound for estimating G(f ).
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LEMMA 9. Let Ĝ(f ) be the BlockJS estimator of G(f ) defined in Section 3.
Then there exists a constant C > 0 such that

sup
f ∈Fα

p,q (M,ε,v)

P{‖Ĝ(f )‖∞ > C} ≤ Cln
−l

for any l > 1, where Cl is a constant depending on l.

PROOF. Recall that we can write the discrete wavelet transform of the binned
data as

uj,k = θ ′
j,k + εj,k + 1√

n
zj,k + ξj,k,

where θ ′
jk are the discrete wavelet transform of (

G(f (i/T ))√
T

) which are approxi-

mately equal to the true wavelet coefficients θjk of G(f ). Note that |θ ′
jk − θjk| =

O(2−j (d+1/2)), for d = min(α − 1/p,1). Note also that a Besov Ball Bα
p,q(M)

can be embedded in Bd∞,∞(M1) for some M1 > 0 [see, e.g., Meyer (1992)]. From
the equation above, we have

2j0∑
k=1

θ̃ ′
j0,k

φj0,k(t) +
J−1∑
j=j0

2j∑
k=1

θ ′
j,kψj,k(t) ∈ Bd∞,∞(M2)

for some M2 > 0. Applying the Block thresholding approach, we have

θ̂jk =
(

1 − λLσ 2

S2
(j,i)

)
+
θ ′
j,k +

(
1 − λLσ 2

S2
(j,i)

)
+
εj,k

+
(

1 − λLσ 2

S2
(j,i)

)
+

(
1√
n
zj,k + ξj,k

)
= θ̂1,jk + θ̂2,jk + θ̂3,jk for (j, k) ∈ Bi

j , j0 ≤ j < J.

Note that |θ̂1,jk| ≤ |θ ′
j,k| and so ĝ1 = ∑2j0

k=1 θ̃ ′
j0,k

φj0,k + ∑J−1
j=j0

∑2j

k=1 θ̂1,j,kψj,k ∈
Bd∞,∞(M2). This implies ĝ1 is uniformly bounded. Note that

T 1/2
(∑

j,k

(ε2
j,k)

)1/2

= T 1/2 · O(m−2) = o(1),

so W−1 · T 1/2(θ̂2,jk) is a uniformly bounded vector. For 0 < β < 1/6 and a con-
stant a > 0 we have

P
(|θ̂3,jk| > a2−j (β+1/2)) ≤ P

(|θ̂3,jk| > aT −(β+1/2))
≤ P

(∣∣∣∣ 1√
n
zj,k

∣∣∣∣ > 1

2
aT −(β+1/2)

)

+ P

(
|ξj,k| > 1

2
aT −(β+1/2)

)
≤ Aln

−l
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for any l > 1 by Mill’s ratio inequality and equation (58). Let

A = ⋃
j,k

{|θ̂3,jk| > a2−j (β+1/2)}.
Then P(A) = Cln

−l . On the event Ac we have

ĝ3(t) =
J−1∑
j=j0

2j∑
k=1

θ̂3,jkψj,k(t) ∈ Bβ∞,∞(M3) for some M3 > 0,

which is uniformly bounded. Combining these results, we know that for C suffi-
ciently large

sup
f ∈Fα

p,q (M,ε,v)

P{‖Ĝ(f )‖∞ > C} ≤ sup
f ∈Fα

p,q (M,ε)

P(A) = Cln
−l .(62)

�

Now we are ready to prove Theorems 2 and 5. Note that G−1 is an increasing
and nonnegative function, and V is a quadratic variance function [see (1)]. Lem-
ma 9 implies that there exists a constant C such that

sup
f ∈Fα

p,q (M,ε,v)

P{‖V (G−1(g))‖∞ > C} ≤ Cln
−l

for any l > 1. Thus it is enough to show supf ∈Fα
p,q (M,ε,v) E‖Ĝ(f ) − G(f )‖2

2 ≤
Cn−(2α)/(1+2α) for p ≥ 2 and Cn−(2α)/(1+2α)(logn)(2−p)/(p(1+2α)) for 1 ≤ p < 2
under assumptions in Theorems 2 and 5.

PROOF OF THEOREM 2. Let Y and θ̂ be given as in (32) and (24), respectively.
Then

E‖Ĝ(f ) − G(f )‖2
2 = ∑

k

E(̂̃θ j0,k − θ̃j,k)
2

+
J−1∑
j=j0

∑
k

E(θ̂j,k − θj,k)
2 +

∞∑
j=J

∑
k

θ2
j,k(63)

≡ S1 + S2 + S3.

It is easy to see that the first term S1 and the third term S3 are small:

S1 = 2j0n−1ε2 = o
(
n−2α/(1+2α)).(64)

Note that for x ∈ Rm and 0 < p1 ≤ p2 ≤ ∞,

‖x‖p2 ≤ ‖x‖p1 ≤ m1/p1−1/p2‖x‖p2 .(65)

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θjk|p)1/p ≤ M . Now (65) yields that

S3 =
∞∑

j=J

∑
k

θ2
j,k ≤ C2−2J (α∧(α+1/2−1/p)).(66)
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Proposition 1, Lemma 8 and (57) yield that

S2 ≤ 2
J−1∑
j=j0

∑
k

E(θ̂j,k − θ ′
j,k)

2 + 2
J−1∑
j=j0

∑
k

(θ ′
j,k − θj,k)

2

≤
J−1∑
j=j0

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}
(67)

+ 6
J−1∑
j=j0

∑
k

ε2
j,k + Cn−1 + 10

J−1∑
j=j0

∑
k

(θ ′
j,k − θj,k)

2

≤
J−1∑
j=j0

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}
+ Cm−4 + Cn−1 + CT −2d,

which we now divide into two cases. First consider the case p ≥ 2. Let J1 =
[ 1

1+2α
log2 n]. So, 2J1 ≈ n1/(1+2α). Then (67) and (65) yield

S2 ≤ 8λ∗
J1−1∑
j=j0

2j /L∑
i=1

Ln−1 + 8
J−1∑
j=J1

∑
k

θ2
j,k + Cn−1 + CT −2d

(68)
≤ Cn−2α/(1+2α).

By combining (68) with (64) and (66), we have E‖θ̂ − θ‖2
2 ≤ Cn−2α/(1+2α), for

p ≥ 2. �

Now let us consider the case p < 2. First we state the following lemma without
proof.

LEMMA 10. Let 0 < p < 1 and S = {x ∈ Rk :
∑k

i=1 x
p
i ≤ B,xi ≥ 0, i =

1, . . . , k}. Then supx∈S

∑k
i=1(xi ∧ A) ≤ B · A1−p for all A > 0.

Let J2 be an integer satisfying 2J2 
 n1/(1+2α)(logn)(2−p)/p(1+2α). Note that

2j /L∑
i=1

( ∑
(j,k)∈Bi

j

θ2
j,k

)p/2

≤
2j∑

k=1

(θ2
j,k)

p/2 ≤ M2−jsp.

It then follows from Lemma 10 that

J−1∑
j=J2

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}
(69)

≤ Cn−(2α)/(1+2α)(logn)(2−p)/(p(1+2α)).
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On the other hand,

J2−1∑
j=j0

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}

≤
J2−1∑
j=j0

∑
b

8λ∗Ln−1(70)

≤ Cn−(2α)/(1+2α)(logn)(2−p)/(p(1+2α)).

Putting (64), (66), (69) and (70) together yields E‖θ̂ − θ‖2
2 ≤ Cn−(2α)/(1+2α) ×

(logn)(2−p)/(p(1+2α)).

PROOF OF THEOREM 5. The proof of Theorem 5 is similar to that of Theo-
rem 2 except the step of (67). We will thus omit most of the details. For a general
natural exponential family the upper bound for

∑J−1
j=j0

∑
k ε2

j,k in equation (67) is

C(m−2 + T −2d) as given in Section 2, so (67) now becomes

S2 ≤
J−1∑
j=j0

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}
+ Cm−2 + Cn−1 + CT −2d .

For m = cn−1/2, we have m−2 = c2n−1. When α − 1
p

> 2α
1+2α

, it is easy to see

T −2d = o(n−2α/(1+2α)). Theorem 5 then follows from the same steps as in the
proof of Theorem 2. �
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