21,892 research outputs found
Renormalization of Drift and Diffusivity in Random Gradient Flows
We investigate the relationship between the effective diffusivity and
effective drift of a particle moving in a random medium. The velocity of the
particle combines a white noise diffusion process with a local drift term that
depends linearly on the gradient of a gaussian random field with homogeneous
statistics. The theoretical analysis is confirmed by numerical simulation. For
the purely isotropic case the simulation, which measures the effective drift
directly in a constant gradient background field, confirms the result
previously obtained theoretically, that the effective diffusivity and effective
drift are renormalized by the same factor from their local values. For this
isotropic case we provide an intuitive explanation, based on a {\it spatial}
average of local drift, for the renormalization of the effective drift
parameter relative to its local value. We also investigate situations in which
the isotropy is broken by the tensorial relationship of the local drift to the
gradient of the random field. We find that the numerical simulation confirms a
relatively simple renormalization group calculation for the effective
diffusivity and drift tensors.Comment: Latex 16 pages, 5 figures ep
Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback
The recently demonstrated control over light distribution through turbid
media based on real-time three-dimensional optoacoustic feedback has offered
promising prospects to interferometrically focus light within scattering
objects. Nevertheless, the focusing capacity of the feedback-based approach is
strongly conditioned by the number of effectively resolvable optical modes
(speckles). In this letter, we experimentally tested the light intensity
enhancement achieved with optoacoustic feedback measurements from different
sizes of absorbing microparticles. The importance of the obtained results is
discussed in the context of potential signal enhancement at deep locations
within a scattering medium where the effective speckle sizes approach the
minimum values dictated by optical diffraction
Diffusion of active tracers in fluctuating fields
The problem of a particle diffusion in a fluctuating scalar field is studied.
In contrast to most studies of advection diffusion in random fields we analyze
the case where the particle position is also coupled to the dynamics of the
field. Physical realizations of this problem are numerous and range from the
diffusion of proteins in fluctuating membranes and the diffusion of localized
magnetic fields in spin systems. We present exact results for the diffusion
constant of particles diffusing in dynamical Gaussian fields in the adiabatic
limit where the field evolution is much faster than the particle diffusion. In
addition we compute the diffusion constant perturbatively, in the weak coupling
limit where the interaction of the particle with the field is small, using a
Kubo-type relation. Finally we construct a simple toy model which can be solved
exactly.Comment: 13 pages, 1 figur
Dynamical transition for a particle in a squared Gaussian potential
We study the problem of a Brownian particle diffusing in finite dimensions in
a potential given by where is Gaussian random field.
Exact results for the diffusion constant in the high temperature phase are
given in one and two dimensions and it is shown to vanish in a power-law
fashion at the dynamical transition temperature. Our results are confronted
with numerical simulations where the Gaussian field is constructed, in a
standard way, as a sum over random Fourier modes. We show that when the number
of Fourier modes is finite the low temperature diffusion constant becomes
non-zero and has an Arrhenius form. Thus we have a simple model with a fully
understood finite size scaling theory for the dynamical transition. In addition
we analyse the nature of the anomalous diffusion in the low temperature regime
and show that the anomalous exponent agrees with that predicted by a trap
model.Comment: 18 pages, 4 figures .eps, JPA styl
High-spin intruder states in the fp shell nuclei and isoscalar proton-neutron correlations
We perform a systematic shell-model and mean-field study of fully-aligned,
high-spin f_{7/2}^{n} seniority isomers and d_{3/2}^{-1} f_{7/2}^{n+1} intruder
states in the A~44 nuclei from the lower-fp shell. The shell-model calculations
are performed in the full sdfp configuration space allowing 1p-1h cross-shell
excitations. The self-consistent mean-field calculations are based on the
Hartree-Fock approach with the Skyrme energy density functional that reproduces
empirical Landau parameters. While there is a nice agreement between
experimental and theoretical relative energies of fully-aligned states in N>Z
nuclei, this is no longer the case for the N=Z systems. The remaining deviation
from the data is attributed to the isoscalar proton-neutron correlations. It is
also demonstrated that the Coulomb corrections at high spins noticeably depend
on the choice of the energy density functional.Comment: 4 pages. submitted to Phys. Rev. Let
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control System
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control
System The roots of ATLAS (Argonne Tandem-Linac Accelerator System) date back
to the early 1960s. Located at the Argonne National Laboratory, the accelerator
has been designated a National User Facility, which focuses primarily on
heavy-ion nuclear physics. Like the accelerator it services, the control system
has been in a constant state of evolution. The present real-time portion of the
control system is based on the commercial product Vsystem [1]. While Vsystem
has always been capable of distributed I/O processing, the latest offering of
this product provides for the use of relatively inexpensive PC hardware and
software. This paper reviews the status of the ATLAS control system, and
describes first experiences with PC distributed I/O.Comment: ICALEPCS 2001 Conference, PSN WEAP027, 3 pages, 1 figur
Continuum Derrida Approach to Drift and Diffusivity in Random Media
By means of rather general arguments, based on an approach due to Derrida
that makes use of samples of finite size, we analyse the effective diffusivity
and drift tensors in certain types of random medium in which the motion of the
particles is controlled by molecular diffusion and a local flow field with
known statistical properties. The power of the Derrida method is that it uses
the equilibrium probability distribution, that exists for each {\em finite}
sample, to compute asymptotic behaviour at large times in the {\em infinite}
medium. In certain cases, where this equilibrium situation is associated with a
vanishing microcurrent, our results demonstrate the equality of the
renormalization processes for the effective drift and diffusivity tensors. This
establishes, for those cases, a Ward identity previously verified only to
two-loop order in perturbation theory in certain models. The technique can be
applied also to media in which the diffusivity exhibits spatial fluctuations.
We derive a simple relationship between the effective diffusivity in this case
and that for an associated gradient drift problem that provides an interesting
constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8
Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1
The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots
- …
