544 research outputs found
Effective medium theory of elastic waves in random networks of rods
We formulate an effective medium (mean field) theory of a material consisting
of randomly distributed nodes connected by straight slender rods, hinged at the
nodes. Defining novel wavelength-dependent effective elastic moduli, we
calculate both the static moduli and the dispersion relations of ultrasonic
longitudinal and transverse elastic waves. At finite wave vector the waves
are dispersive, with phase and group velocities decreasing with increasing wave
vector. These results are directly applicable to networks with empty pore
space. They also describe the solid matrix in two-component (Biot) theories of
fluid-filled porous media. We suggest the possibility of low density materials
with higher ratios of stiffness and strength to density than those of foams,
aerogels or trabecular bone.Comment: 14 pp., 3 fig
Initial Conditions for a Universe
In physical theories, boundary or initial conditions play the role of
selecting special situations which can be described by a theory with its
general laws. Cosmology has long been suspected to be different in that its
fundamental theory should explain the fact that we can observe only one
particular realization. This is not realized, however, in the classical
formulation and in its conventional quantization; the situation is even worse
due to the singularity problem. In recent years, a new formulation of quantum
cosmology has been developed which is based on quantum geometry, a candidate
for a theory of quantum gravity. Here, the dynamical law and initial conditions
turn out to be linked intimately, in combination with a solution of the
singularity problem.Comment: 7 pages, this essay was awarded First Prize in the Gravity Research
Foundation Essay Contest 200
Quantum creation of an Inhomogeneous universe
In this paper we study a class of inhomogeneous cosmological models which is
a modified version of what is usually called the Lema\^itre-Tolman model. We
assume that we have a space with 2-dimensional locally homogeneous spacelike
surfaces. In addition we assume they are compact. Classically we investigate
both homogeneous and inhomogeneous spacetimes which this model describe. For
instance one is a quotient of the AdS space which resembles the BTZ black
hole in AdS.
Due to the complexity of the model we indicate a simpler model which can be
quantized easily. This model still has the feature that it is in general
inhomogeneous. How this model could describe a spontaneous creation of a
universe through a tunneling event is emphasized.Comment: 21 pages, 5 ps figures, REVTeX, new subsection include
Quantum Cosmology of Kantowski-Sachs like Models
The Wheeler-DeWitt equation for a class of Kantowski-Sachs like models is
completely solved. The generalized models include the Kantowski-Sachs model
with cosmological constant and pressureless dust. Likewise contained is a
joined model which consists of a Kantowski-Sachs cylinder inserted between two
FRW half--spheres. The (second order) WKB approximation is exact for the wave
functions of the complete set and this facilitates the product structure of the
wave function for the joined model. In spite of the product structure the wave
function can not be interpreted as admitting no correlations between the
different regions. This problem is due to the joining procedure and may
therefore be present for all joined models. Finally, the {s}ymmetric {i}nitial
{c}ondition (SIC) for the wave function is analyzed and compared with the ``no
bouindary'' condition. The consequences of the different boundary conditions
for the arrow of time are briefly mentioned.Comment: 21 pages, uses LaTeX2e, epsf.sty and float.sty, three figures (50
kb); changes: one figure added, new interpretation of quantizing procedure
for the joined model and many minor change
Quantum state correction of relic gravitons from quantum gravity
The semiclassical approach to quantum gravity would yield the Schroedinger
formalism for the wave function of metric perturbations or gravitons plus
quantum gravity correcting terms in pure gravity; thus, in the inflationary
scenario, we should expect correcting effects to the relic graviton
(Zel'dovich) spectrum of the order (H/mPl)^2
Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology
We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological
model of Bianchi type I with a minimally coupled massive scalar field as
source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to
other approaches we allow strong anisotropy. Combining analytical and numerical
methods, we apply an adiabatic approximation for , and as new feature we
find a period-doubling bifurcation. This bifurcation takes place near the
cosmological quantum boundary, i.e., the boundary of the quasiclassical region
with oscillating -function where the WKB-approximation is good. The
numerical calculations suggest that such a notion of a ``cosmological quantum
boundary'' is well-defined, because sharply beyond that boundary, the
WKB-approximation is no more applicable at all. This result confirms the
adequateness of the introduction of a cosmological quantum boundary in quantum
cosmology.Comment: Latest update of the paper at
http://www.physik.fu-berlin.de/~mbach/publics.html#
Starobinsky Model in Schroedinger Description
In the Starobinsky inflationary model inflation is driven by quantum
corrections to the vacuum Einstein equation. We reduce the Wheeler-DeWitt
equation corresponding to the Starobinsky model to a Schroedinger form
containing time. The Schroedinger equation is solved with a Gaussian ansatz.
Using the prescription for the normalization constant of the wavefunction given
in our previous work, we show that the Gaussian ansatz demands Hawking type
initial conditions for the wavefunction of the universe. The wormholes induce
randomness in initial states suggesting a basis for time-contained description
of the Wheeler-DeWitt equation.Comment: 19 Pages, LaTeX, no figure, gross typographical mistake
Guidance on global interprofessional education and collaborative practice research : discussion paper
Arrow of time in a recollapsing quantum universe
We show that the Wheeler-DeWitt equation with a consistent boundary condition
is only compatible with an arrow of time that formally reverses in a
recollapsing universe. Consistency of these opposite arrows is facilitated by
quantum effects in the region of the classical turning point. Since
gravitational time dilation diverges at horizons, collapsing matter must then
start re-expanding ``anticausally" (controlled by the reversed arrow) before
horizons or singularities can form. We also discuss the meaning of the
time-asymmetric expression used in the definition of ``consistent histories".
We finally emphasize that there is no mass inflation nor any information loss
paradox in this scenario.Comment: Many conceptual clarifications include
Probing the unusual anion mobility of LiBH_4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering
Particle size and particle–framework interactions have profound effects on the kinetics, reaction pathways, and even thermodynamics of complex hydrides incorporated in frameworks possessing nanoscale features. Tuning these properties may hold the key to the utilization of complex hydrides in practical applications for hydrogen storage. Using carefully synthesized, highly-ordered, nanoporous carbons (NPCs), we have previously shown quantitative differences in the kinetics and reaction pathways of LiBH_4 when incorporated into the frameworks. In this paper, we probe the anion mobility of LiBH_4 confined in NPC frameworks by a combination of solid state NMR and quasielastic neutron scattering (QENS) and present some new insights into the nanoconfinement effect. NMR and QENS spectra of LiBH_4 confined in a 4 nm pore NPC suggest that the BH_4− anions nearer the LiBH_4–carbon pore interface exhibit much more rapid translational and reorientational motions compared to those in the LiBH_4 interior. Moreover, an overly broadened BH_4− torsional vibration band reveals a disorder-induced array of BH_4− rotational potentials. XRD results are consistent with a lack of LiBH_4 long-range order in the pores. Consistent with differential scanning calorimetry measurements, neither NMR nor QENS detects a clear solid–solid phase transition as observed in the bulk, indicating that borohydride–framework interactions and/or nanosize effects have large roles in confined LiBH_4
- …
