16,948 research outputs found
Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons
Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation
Development of an integrated cognitive behavioral therapy for anxiety and opioid use disorder: Study protocol and methods
Opioid use disorder is a highly disabling psychiatric disorder, and is associated with both significant functional disruption and risk for negative health outcomes such as infectious disease and fatal overdose. Even among those who receive evidence-based pharmacotherapy for opioid use disorder, many drop out of treatment or relapse, highlighting the importance of novel treatment strategies for this population. Over 60% of those with opioid use disorder also meet diagnostic criteria for an anxiety disorder; however, efficacious treatments for this common co-occurrence have not be established. This manuscript describes the rationale and methods for a behavioral treatment development study designed to develop and test an integrated cognitive-behavioral therapy for those with co-occurring opioid use disorder and anxiety disorders. The aims of the study are (1) to develop and pilot test a new manualized cognitive behavioral therapy for co-occurring opioid use disorder and anxiety disorders, (2) to test the efficacy of this treatment relative to an active comparison treatment that targets opioid use disorder alone, and (3) to investigate the role of stress reactivity in both prognosis and recovery from opioid use disorder and anxiety disorders. Our overarching aim is to investigate whether this new treatment improves both anxiety and opioid use disorder outcomes relative to standard treatment. Identifying optimal treatment strategies for this population are needed to improve outcomes among those with this highly disabling and life-threatening disorder.This study was funded by NIDA grant DA035297. The funding source had no involvement in the study design, analysis and interpretation of data, writing of the report, or the decision to submit the article for publication. (DA035297 - NIDA)Accepted manuscrip
Recommended from our members
The identification and psychological treatment of panic disorder in adolescents: a survey of CAMHS clinicians
Background
Panic disorder is experienced by around 1% of adolescents, and has a significant impact on social and academic functioning. Preliminary evidence supports the effectiveness of panic disorder specific treatment in adolescents with panic disorder, however panic disorder may be overlooked in adolescents due to overlapping symptoms with other anxiety disorders and other difficulties being more noticeable to others. The aim of this study was to establish what training National Health Service (NHS) Child and Adolescent Mental Health Services (CAMHS) clinicians have received in psychological therapies and panic disorder and how they identify and treat panic disorder in adolescents.
Method
CAMHS clinicians from a range of professions (n = 427), who were delivering psychological treatments to children and adolescents with anxiety disorders, participated. They completed a cross-sectional, online survey, including a vignette describing an adolescent with panic disorder, and were asked to identify the main diagnosis or presenting problem.
Results
Less than half the clinicians (48.6%) identified panic disorder or panic symptoms as the main presenting problem from the vignette. The majority of clinicians suggested CBT would be their treatment approach. However, few identified an evidence-based treatment protocol for working with young people with panic disorder. Almost half the sample had received no training in cognitive behaviour therapy (CBT) and around a fifth had received no training in delivering psychological treatments.
Conclusions
Only half of CAMHS clinicians identified panic disorder from a vignette and although CBT treatments are widely offered, only a minority of adolescents with panic disorder are receiving treatments developed for, and evaluated with young people with panic disorder. There is a vital need for clinician training, the use of tools that aid identification and the implementation of evidence-based treatments within CAMHS
Knowledge-based vision and simple visual machines
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong
Biased tomography schemes: an objective approach
We report on an intrinsic relationship between the maximum-likelihood
quantum-state estimation and the representation of the signal. A quantum
analogy of the transfer function determines the space where the reconstruction
should be done without the need for any ad hoc truncations of the Hilbert
space. An illustration of this method is provided by a simple yet practically
important tomography of an optical signal registered by realistic binary
detectors.Comment: 4 pages, 3 figures, accepted in PR
Temperature and Kinematics of CIV Absorption Systems
We use Keck HIRES spectra of three intermediate redshift QSOs to study the
physical state and kinematics of the individual components of CIV selected
heavy element absorption systems. Fewer than 8 % of all CIV lines with column
densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A
formal decomposition into thermal and non-thermal motion using the simultaneous
presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2
km/s, corresponding to a temperature of 38,000 K although temperatures possibly
in excess of 300,000 K occur occasionally. We also find tentative evidence for
a mild increase of temperature with HI column density. Non-thermal motions
within components are typically small (< 10 km/s) for most systems, indicative
of a quiescent environment. The two-point correlation function (TPCF) of CIV
systems on scales up to 500 km/s suggests that there is more than one source of
velocity dispersion. The shape of the TPCF can be understood if the CIV systems
are caused by ensembles of objects with the kinematics of dwarf galaxies on a
small scale, while following the Hubble flow on a larger scale. Individual high
redshift CIV components may be the building blocks of future normal galaxies in
a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex
pages, 4 Postscript figures, and psfig.sty included
Struggling and juggling: a comparison of assessment loads in research and teaching-intensive universities
In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research-and teaching intensive universities. We clarify the concept of ‘assessment load’ in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence students’ approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that ‘more’ is always better, proposing that lighter assessment loads may make room for ‘slow’ and deep learning
A Measurement of the Temperature-Density Relation in the Intergalactic Medium Using a New Lyman-alpha Absorption Line Fitting Method
The evolution of the temperature in the intergalactic medium is related to
the reionization of hydrogen and helium, and has important consequences for our
understanding of the Lya forest and of galaxy formation in gravitational models
of large-scale structure. We measure the temperature-density relation of
intergalactic gas from Lya forest observations of eight quasar spectra with
high resolution and signal-to-noise ratio, using a new line fitting technique
to obtain a lower cutoff of the distribution of line widths from which the
temperature is derived. We carefully test the accuracy of this technique to
recover the gas temperature with a hydrodynamic simulation. The temperature at
redshift z=(3.9, 3.0, 2.4) is best determined at densities slightly above the
mean: T_star=(20200\pm2700, 20200\pm1300, 22600\pm1900)K (statistical error
bars) for gas density (in units of the mean density) Delta_star=(1.42\pm0.08,
1.37\pm0.11, 1.66\pm0.11). The power-law index of the temperature-density
relation, defined by T=T_star(Delta/Delta_star)^{gamma-1}, is gamma-1=
(0.43\pm0.45, 0.29\pm0.30, 0.52\pm0.14) for the same three redshifts. The
temperature at the fixed over-density Delta=1.4 is T_1.4=(20100\pm2800,
20300\pm1400, 20700\pm1900)K. These temperatures are higher than expected for
photoionized gas in ionization equilibrium with a cosmic background, and can be
explained by a gradual additional heating due to on-going HeII reionization.
The measurement of the temperature reduces one source of uncertainty in the
lower limit to the baryon density implied by the observed mean flux decrement.
We find that the temperature cannot be reliably measured for under-dense gas,
because the velocities due to expansion always dominate the widths of the
corresponding weak lines.Comment: submitted to Ap
Entropy and information in neural spike trains: Progress on the sampling problem
The major problem in information theoretic analysis of neural responses and
other biological data is the reliable estimation of entropy--like quantities
from small samples. We apply a recently introduced Bayesian entropy estimator
to synthetic data inspired by experiments, and to real experimental spike
trains. The estimator performs admirably even very deep in the undersampled
regime, where other techniques fail. This opens new possibilities for the
information theoretic analysis of experiments, and may be of general interest
as an example of learning from limited data.Comment: 7 pages, 4 figures; referee suggested changes, accepted versio
Analytical study of the effect of recombination on evolution via DNA shuffling
We investigate a multi-locus evolutionary model which is based on the DNA
shuffling protocol widely applied in \textit{in vitro} directed evolution. This
model incorporates selection, recombination and point mutations. The simplicity
of the model allows us to obtain a full analytical treatment of both its
dynamical and equilibrium properties, for the case of an infinite population.
We also briefly discuss finite population size corrections
- …
