34 research outputs found

    A eubacterial origin for the human tRNA nucleotidyltransferase?

    Get PDF
    tRNA CCA-termini are generated and maintained by tRNA nucleotidyltransferases. Together with poly(A) polymerases and other enzymes they belong to the nucleotidyltransferase superfamily. However, sequence alignments within this family do not allow to distinguish between CCA-adding enzymes and poly(A) polymerases. Furthermore, due to the lack of sequence information about animal CCA-adding enzymes, identification of corresponding animal genes was not possible so far. Therefore, we looked for the human homolog using the baker's yeast tRNA nucleotidyltransferase as a query sequence in a BLAST search. This revealed that the human gene transcript CGI-47, (\#AF151805) deposited in GenBank is likely to encode such an enzyme. To identify the nature of this protein, the cDNA of the transcript was cloned and the recombinant protein biochemically characterized, indicating that CGI-47 encodes a bona fide CCA-adding enzyme and not a poly(A) polymerase. This confirmed animal CCA-adding enzyme allowed us to identify putative homologs from other animals. Calculation of a neighbor-joining tree, using an alignment of several CCA-adding enzymes, revealed that the animal enzymes resemble more eubacterial ones than eukaryotic plant and fungal tRNA nucleotidyltransferases, suggesting that the animal nuclear cca genes might have been derived from the endosymbiotic progenitor of mitochondria and are therefore of eubacterial origin

    Apparent involvement of ribonuclease D in the 3' processing of tRNA precursors.

    Full text link

    Apparent involvement of ribonuclease D in the 3' processing of tRNA precursors.

    No full text
    Escherichia coli RNase D and RNase II have been purified to homogeneity and compared for their ability to remove extra nucleotides following the -C-C-A sequence in tRNA precursors. RNase D and RNase II are single-chain proteins with molecular weights of 38,000 and 78,000, respectively. Both enzymes require a divalent cation for activity on tRNA precursors, but, in addition, RNase II is stimulated by monovalent cations. RNase D specifically removes mononucleotide residues from a mixture of tRNA precursors to generate amino acid acceptor activity for essentially all amino acids. Although RNase II can also remove precursor-specific residues, no amino acid acceptor activity is recovered. Similarly, RNase D action on the E. coli tRNATyr precursor is limited, whereas RNase II causes extensive degradation. In contrast to the processive mode of hydrolysis by RNase II, RNase D removes nucleotides randomly and slows down greatly at the -C-C-A sequence, thereby allowing the tRNA to be aminoacylated and protected from further degradation. These results suggest that RNase D is the 3'-processing nuclease in vivo and that RNase II is a nonspecific degradative enzyme. The importance of RNA conformation for correct processing is also discussed
    corecore