119 research outputs found

    Clinical and angiographic results of angioplasty with a paclitaxel-eluting stent for unprotected left main coronary artery disease (a study of 101 consecutive patients)

    Get PDF
    SummaryBackgroundAfter coronary stenting with drug eluting stents, long-term clinical outcome of unprotected left main coronary artery disease is unknown, even large scale registries or randomised trials with coronary artery bypass graft are ongoing.AimsTo report clinical and angiographic results of paclitaxel-eluting stent implantation for left main coronary artery stenosis (a series of 101 consecutive patients).MethodsThis report is a prospective study performed to evaluate the immediate and mid-term clinical and angiographic outcomes of patients undergoing paclitaxel-eluting stent (PES) implantation for unprotected left main coronary artery (LMCA) stenosis.From January 2004 to December 2005, 101 consecutive patients were stented with paclitaxel-eluting stents (the provisional T stenting technique followed by Kissing balloon for distal left main vessel disease).ResultsMean age was 68.9±11.07 years. 73.3% of patients were male. Acute coronary syndrome was present in 65% of patients, of whom 22.8% had ST elevation. Distal left main trunk lesions were present in 87.1% of cases. Three-vessel disease represented 7% of cases. Angiographic success was obtained in 97.03% of patients with an acute gain of 2.18±0.53mm. GPIIbIIIa inhibitors were used in only 8.9% of cases. Hospital stay was 7.6±3.7 days. In-hospital complications were present in 7.9%, with a hospital mortality rate of 2%.At six month follow-up, the rate of target lesion revascularization (TLR) was 3%, and the rate for major adverse cardiac events (MACE) was 8.9%. Angiographic control was performed in 88.1% and a late loss of 0.1mm (0.04–0.2mm) was noted. Re-stenosis occurred in 4 patients (4.5% of cases). 4 patients (4%) died, including 2 from cardiac causes.ConclusionPaclitaxel-eluting stent implantation for unprotected left main coronary disease appears to be safe with high procedural success rate and a low re-stenosis rate at six month-follow-up

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Evaluation and diagnostic potential of circulating extracellular vesicle-associated microRNAs in adrenocortical tumors

    Get PDF
    There is no available blood marker for the preoperative diagnosis of adrenocortical malignancy. The objective of this study was to investigate the expression of extracellular vesicle-associated microRNAs and their diagnostic potential in plasma samples of patients suffering from adrenocortical tumors. Extracellular vesicles were isolated either by using Total Exosome Isolation Kit or by differential centrifugation/ultracentrifugation. Preoperative plasma extracellular vesicle samples of 6 adrenocortical adenomas (ACA) and 6 histologically verified adrenocortical cancer (ACC) were first screened by Taqman Human Microarray A-cards. Based on the results of screening, two miRNAs were selected and validated by targeted quantitative real-time PCR. The validation cohort included 18 ACAs and 16 ACCs. Beside RNA analysis, extracellular vesicle preparations were also assessed by transmission electron microscopy, flow cytometry and dynamic light scattering. Significant overexpression of hsa-miR-101 and hsa-miR-483-5p in ACC relative to ACA samples has been validated. Receiver operator characteristics of data revealed dCT hsa-miR-483-5p normalized to cel-miR-39 to have the highest diagnostic accuracy (area under curve 0.965), the sensitivity and the specifity were 87.5 and 94.44, respectively. Extracellular vesicle-associated hsa-miR-483-5p thus appears to be a promising minimally invasive biomarker in the preoperative diagnosis of ACC but needs further validation in larger cohorts of patients

    Staphylococcus sciuri Exfoliative Toxin C (ExhC) is a Necrosis-Inducer for Mammalian Cells

    Get PDF
    Staphylococcus sciuri (S. sciuri) is a rare pathogen in humans, but it can cause a wide array of human infections. Recently a S. sciuri isolate (HBXX06) was reported to cause fatal exudative epidermitis (EE) in piglets and thus considered as a potential zoonotic agent. To investigate the pathogenicity of this bacterium, we cloned exfoliative toxin C (ExhC), a major toxin of the S. sciuri isolate and performed functional analysis of the recombinant ExhC-his (rExhC) protein using in vitro cell cultures and newborn mice as models. We found that rExhC could induce necrosis in multiple cell lines and peritoneal macrophages as well as skin lesions in newborn mice, and that the rExhC-induced necrosis in cells or skin lesions in newborn mice could be completely abolished if amino acids 79-128 of rExhC were deleted or blocked with a monoclonal antibody (3E4), indicating aa 79-128 portion as an essential necrosis-inducing domain. This information contributes to further understandings of the mechanisms underlying S. sciuri infection

    Assay for high glucose-mediated islet cell sensitization to apoptosis induced by streptozotocin and cytokines

    Get PDF
    Pancreatic β-cell apoptosis is known to participate in the β-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interferon (IFN)-γ]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB)

    Direct Infection and Replication of Naturally Occurring Hepatitis C Virus Genotypes 1, 2, 3 and 4 in Normal Human Hepatocyte Cultures

    Get PDF
    Hepatitis C virus (HCV) infection afflicts about 170 million individuals worldwide. However, the HCV life cycle is only partially understood because it has not been possible to infect normal human hepatocytes in culture. The current Huh-7 systems use cloned, synthetic HCV RNA expressed in hepatocellular carcinoma cells to produce virions, but these cells cannot be infected with naturally occurring HCV obtained from infected patients.Here, we describe a human hepatocyte culture permissible to the direct infection with naturally occurring HCV genotypes 1, 2, 3 and 4 in the blood of HCV-infected patients. The culture system mimics the biology and kinetics of HCV infection in humans, and produces infectious virions that can infect naïve human hepatocytes.This culture system should complement the existing systems, and may facilitate the understanding of the HCV life cycle, its effects in the natural host cell, the hepatocyte, as well as the development of novel therapeutics and vaccines

    TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    Get PDF
    BACKGROUND: Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. METHODS: The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. RESULTS: While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. CONCLUSIONS: Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis

    High Distribution of CD40 and TRAF2 in Th40 T Cell Rafts Leads to Preferential Survival of this Auto-Aggressive Population in Autoimmunity

    Get PDF
    CD40-CD154 interactions have proven critical in autoimmunity, with the identification of CD4(lo)CD40(+) T cells (Th40 cells) as harboring an autoaggressive T cell population shedding new insights into those disease processes. Th40 cells are present at contained levels in non-autoimmune individuals but are significantly expanded in autoimmunity. Th40 cells are necessary and sufficient in transferring type 1 diabetes in mouse models. However, little is known about CD40 signaling in T cells and whether there are differences in that signaling and subsequent outcome depending on disease conditions. When CD40 is engaged, CD40 and TNF-receptor associated factors, TRAFs, become associated with lipid raft microdomains. Dysregulation of T cell homeostasis is emerging as a major contributor to autoimmune disease and thwarted apoptosis is key in breaking homeostasis.Cells were sorted into CD4(hi) and CD4(lo) (Th40 cells) then treated and assayed either as whole or fractionated cell lysates. Protein expression was assayed by western blot and Nf-kappaB DNA-binding activity by electrophoretic mobility shifts. We demonstrate here that autoimmune NOD Th40 cells have drastically exaggerated expression of CD40 on a per-cell-basis compared to non-autoimmune BALB/c. Immediately ex-vivo, untreated Th40 cells from NOD mice have high levels of CD40 and TRAF2 associated with the raft microdomain while Th40 cells from NOR and BALB/c mice do not. CD40 engagement of Th40 cells induces Nf-kappaB DNA-binding activity and anti-apoptotic Bcl-X(L) expression in all three mouse strains. However, only in NOD Th40 cells is anti-apoptotic cFLIP(p43) induced which leads to preferential survival and proliferation. Importantly, CD40 engagement rescues NOD Th40 cells from Fas-induced death.CD40 may act as a switch between life and death promoting signals and NOD Th40 cells are poised for survival via this switch. This may explain how they expand in autoimmunity to thwart T cell homeostasis

    Inositol 1,4,5- Trisphosphate Receptor Function in Drosophila Insulin Producing Cells

    Get PDF
    The Inositol 1,4,5- trisphosphate receptor (InsP3R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP3 signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP3R (itpr) gene. Here, we show that growth defects precede larval lethality and both are a consequence of the inability to feed normally. Moreover, restoring InsP3R function in insulin producing cells (IPCs) in the larval brain rescues the feeding deficit, growth and lethality in the itpr mutants to a significant extent. We have previously demonstrated a critical requirement for InsP3R activity in neuronal cells, specifically in aminergic interneurons, for larval viability. Processes from the IPCs and aminergic domain are closely apposed in the third instar larval brain with no visible cellular overlap. Ubiquitous depletion of itpr by dsRNA results in feeding deficits leading to larval lethality similar to the itpr mutant phenotype. However, when itpr is depleted specifically in IPCs or aminergic neurons, the larvae are viable. These data support a model where InsP3R activity in non-overlapping neuronal domains independently rescues larval itpr phenotypes by non-cell autonomous mechanisms
    corecore