13,941 research outputs found

    Common Errors Found in the Use of Sentence Structure: a Case Study

    Full text link
    This study is done to find out: (1) the common errors in the use of sentence structure and (2) the similarities and differences on the types of errors in the use of sentence structure between original draft in the first topic, second topic, and third topic of Written English 4B class English Department in Petra Christian University. The writer chooses the theory of common errors in the use of sentence structure as proposed by Ho (2005). The findings of this study show that there are seven (7) out of eight (8) types of errors that occur in the students' drafts. Fragmented Sentence is the most common error made by the students in their drafts. In addition, there were similarities and differences on the types of errors and the frequency of occurrences of errors among the students. In conclusion, most of the students have understood about the use of sentence structure

    Giant Radio Sources

    Get PDF
    We present multi-frequency VLA observations of two giant quasars, 0437-244 and 1025-229, from the Molonglo Complete Sample. These sources have well-defined FRII radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (RM<20rad/m2\mid RM \mid < 20 rad/m^2). The giant sources are defined to be those whose overall projected size is \geq 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to the smaller sources of similar total luminosity. Hence their large sizes are unlikely to be due to stronger nuclear activity. The degree of collinearity of the giant sources is also similar to the sample of smaller sources. The luminosity-size diagram shows that the giant sources are less luminous than our sample of smaller-sized 3CR sources, consistent with evolutionary scenarios where the giants have evolved from the smaller sources losing energy as they expand to these large dimensions. For the smaller sources, radiative losses due to synchrotron radiation is more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton losses with the microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.Comment: 14 pages with 12 figures, MNRAS LaTex. Accepted for publication in MNRAS. Minor changes in the text and couple of references adde

    Effects of curvature and interactions on the dynamics of the deconfinement phase transition

    Get PDF
    We study the dynamics of first-order cofinement-deconfinement phase transition through nucleation of hadronic bubbles in an expanding quark gluon plasma in the context of heavy ion collisions for interacting quark and hadron gas and by incorporating the effects of curvature energy. We find that the interactions reduce the delay in the phase transition whereas the curvature energy has a mixed behavior. In contrast to the case of early Universe phase transition, here lower values of surface tension increase the supercooling and slow down the hadronization process. Higher values of bag pressure tend to speed up the transition. Another interesting feature is the start of the hadronization process as soon as the QGP is created.Comment: LaTeX, 17 pages including 14 postscript figure

    Wideband slotted patch antennas using EBG structures

    Get PDF
    Copyright @ 2010 IEEEA slotted microstrip patch antenna is designed with Electromagnetic Band gap (EBG) structures. The performance parameters of the presented antenna are then compared with the conventional patch antenna. It is realized that there is a significant increase of bandwidth and better suppression of harmonics than the normal patch antenna. This antenna is thus operating in the frequency band 5 - 6 GHz which is one of the most usable bandwidth regions for wireless applications such as WiMAX, WiFi outdoor, WLAN, Hiperlan/2 and many more. The proposed antenna achieves a gain between 4 to 6 dBi built in FR-4 material
    corecore