230 research outputs found

    Qutrit state engineering with biphotons

    Full text link
    The novel experimental realization of three-level optical quantum systems is presented. We use the polarization state of biphotons to generate a specific sequence of states that are used in the extended version of BB84 protocol. We experimentally verify the orthogonality of the basis states and demonstrate the ability to easily switch between them. The tomography procedure is employed to reconstruct the density matrices of generated states.Comment: 5 pages, 4 figures. typos correcte

    Statistical Reconstruction of Qutrits

    Full text link
    We discuss a procedure of measurement followed by the reproduction of the quantum state of a three-level optical system - a frequency- and spatially degenerate two-photon field. The method of statistical estimation of the quantum state based on solving the likelihood equation and analyzing the statistical properties of the obtained estimates is developed. Using the root approach of estimating quantum states, the initial two-photon state vector is reproduced from the measured fourth moments in the field . The developed approach applied to quantum states reconstruction is based on the amplitudes of mutually complementary processes. Classical algorithm of statistical estimation based on the Fisher information matrix is generalized to the case of quantum systems obeying Bohr's complementarity principle. It has been experimentally proved that biphoton-qutrit states can be reconstructed with the fidelity of 0.995-0.999 and higher.Comment: Submitted to Physical Review

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure

    Entanglement-enhanced probing of a delicate material system

    Full text link
    Quantum metrology uses entanglement and other quantum effects to improve the sensitivity of demanding measurements. Probing of delicate systems demands high sensitivity from limited probe energy and has motivated the field's key benchmark-the standard quantum limit. Here we report the first entanglement-enhanced measurement of a delicate material system. We non-destructively probe an atomic spin ensemble by means of near-resonant Faraday rotation, a measurement that is limited by probe-induced scattering in quantum-memory and spin-squeezing applications. We use narrowband, atom-resonant NOON states to beat the standard quantum limit of sensitivity by more than five standard deviations, both on a per-photon and per-damage basis. This demonstrates quantum enhancement with fully realistic loss and noise, including variable-loss effects. The experiment opens the way to ultra-gentle probing of single atoms, single molecules, quantum gases and living cells.Comment: 7 pages, 8 figures; Nature Photonics, advance online publication, 16 December 201

    Understanding the Relationship Between Perceived Quality Cues and Quality Attributes in the Purchase of Meat in Malaysia

    Get PDF
    This study utilizes the Total Food Quality Model to gain a better understanding of how Malaysian consumers make their decision to purchase fresh/chilled meat. We examine the association between quality cues and desired values (quality attributes) with regard to food that is guaranteed Halal, safe to eat, healthy and nutritious, has a good taste, represents good value for money, and is produced in a way that protects the environment and worker welfare. The findings reveal that different quality cues assume different levels of importance when pursuing different desired values

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles

    Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy

    Get PDF
    Cellular therapies based on mesenchymal stromal/stem cells (MSC) are promising strategies in regenerative medicine and oncology. Despite encouraging results, there is still some level of concerns on inoculating MSC in cancer patients. To face this issue, one possibility resides in engineering MSC by incorporating a suicide gene in order to control their fate once infused. Strategies based on Herpes Simplex Virus Thymidine Kinase (HSV-TK) and the Cytosine Deaminase genes have been developed and more recently a novel suicide gene, namely, iCasp9, has been proposed. This approach is based on a variant of human Caspase9 that binds with high affinity to a synthetic, bioinert small molecule (AP20187) leading to cell death. Based on this technology so far marginally applied to MSC, we tested the suitability of iCasp9 suicide strategy in MSC to further increase their safety. MSC have been transfected by a lentiviral vector carrying iCasp9 gene and then tested for viability after AP20187 treatment in comparison with mock-transfected cells. Moreover, accounting our anti-tumor approaches based on MSC expressing potent anti-cancer ligand TNF-Related Apoptosis-Inducing Ligand (TRAIL), we generated adipose MSC co-expressing iCasp9 and TRAIL successfully targeting an aggressive sarcoma type. These data show that anti-cancer and suicide mechanisms can coexist without affecting cells performance and hampering the tumoricidal activity mediated by TRAIL. In conclusion, this study originally indicates the suitability of combining a MSC-based anti-cancer gene approach with iCasp9 demonstrating efficiency and specificity

    Photon-Atom Coupling with Parabolic Mirrors

    Full text link
    Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling technology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently 'natural' attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident onto these mirrors as well as the location of an atom at the mirror's focus. Furthermore, we establish a robust method for determining the efficiency of the photon-atom coupling.Comment: Book chapter in compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchell, ISBN 9783319192307, http://www.springer.com/gp/book/9783319192307. Only change to version1: now with hyperlinks to arXiv eprints of other book chapters mentioned in this on

    Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4⁺ T cells.

    Get PDF
    Human cytomegalovirus (HCMV) is a widely prevalent human herpesvirus, which, after primary infection, persists in the host for life. In healthy individuals, the virus is well controlled by the HCMV-specific T cell response. A key feature of this persistence, in the face of a normally robust host immune response, is the establishment of viral latency. In contrast to lytic infection, which is characterised by extensive viral gene expression and virus production, long-term latency in cells of the myeloid lineage is characterised by highly restricted expression of viral genes, including UL138 and LUNA. Here we report that both UL138 and LUNA-specific T cells were detectable directly ex vivo in healthy HCMV seropositive subjects and that this response is principally CD4⁺ T cell mediated. These UL138-specific CD4⁺ T cells are able to mediate MHC class II restricted cytotoxicity and, importantly, show IFNγ effector function in the context of both lytic and latent infection. Furthermore, in contrast to CDCD4⁺ T cells specific to antigens expressed solely during lytic infection, both the UL138 and LUNA-specific CD4⁺ T cell responses included CD4⁺ T cells that secreted the immunosuppressive cytokine cIL-10. We also show that cIL-10 expressing CD4⁺ T-cells are directed against latently expressed US28 and UL111A. Taken together, our data show that latency-associated gene products of HCMV generate CD4⁺ T cell responses in vivo, which are able to elicit effector function in response to both lytic and latently infected cells. Importantly and in contrast to CD4⁺ T cell populations, which recognise antigens solely expressed during lytic infection, include a subset of cells that secrete the immunosuppressive cytokine cIL-10. This suggests that HCMV skews the T cell responses to latency-associated antigens to one that is overall suppressive in order to sustain latent carriage in vivo
    corecore