224 research outputs found

    Experimental Evidence of Direct Exchange Interaction Mediating Intramolecular Singlet Fission in Weakly-Coupled Dimers

    Full text link
    The electronic interaction between an optically active singlet state (S1S0S_1S_0) and a dark state of singlet multiplicity, known as correlated triplet pair (1[TT]^1[TT]), plays a crucial role in the effective transformation from S1S0S_1S_0 to 1[TT]^1[TT] during intramolecular singlet fission (iSF). This process is understood through mechanisms such as direct exchange coupling and incoherent processes that involve super-exchange coupling through charge-transfer states. However, most insights into these mechanisms are derived from theoretical studies due to the difficulties in obtaining experimental evidence. In this study, we investigate the excited-state interactions between S1S0S_1S_0 and 1[TT]^1[TT] in spiro-conjugated iSF sensitizers by employing transient two-dimensional electronic spectroscopy. This approach allows us to focus on the early stages of the conversion from S1S0S_1S_0 to 1[TT]^1[TT]. Upon optical excitation, a superposition of S1S0S_1S_0 and 1[TT]^1[TT] is created, which gradually transitions to favor 1[TT]^1[TT] within the characteristic time frames of iSF. The observed high-order signals indicate circular repopulation dynamic that effectively reinitiates the iSF process from higher energy electronic states. Our findings, supported by semi-quantum-mechanical simulations of the experimental data, suggest the presence of a direct iSF mechanism in the dimers, facilitated by weak non-adiabatic coupling between S1S0S_1S_0 and 1[TT]^1[TT]. This experiment provides new insights into the equilibrium between the two electronic states, a phenomenon previously understood primarily through theoretical models.Comment: 26 pages, 4 Figure

    Karyotypic conservatism in samples of Characidium cf. zebra (Teleostei, Characiformes, Crenuchidae): Physical mapping of ribosomal genes and natural triploidy

    Get PDF
    Basic and molecular cytogenetic analyses were performed in specimens of Characidium cf. zebra from five collection sites located throughout the Tietê, Paranapanema and Paraguay river basins. The diploid number in specimens from all samples was 2n = 50 with a karyotype composed of 32 metacentric and 18 submetacentric chromosomes in both males and females. Constitutive heterochromatin was present at the centromeric regions of all chromosomes and pair 23, had additional interstitial heterochromatic blocks on its long arms. The nucleolar organizer regions (NORs) were located on the long arms of pair 23, while the 5S rDNA sites were detected in different chromosomes among the studied samples. One specimen from the Alambari river was a natural triploid and had two extra chromosomes, resulting in 2n = 77. The remarkable karyotypic similarity among the specimens of C. cf. zebra suggests a close evolutionary relationship. On the other hand, the distinct patterns of 5S rDNA distribution may be the result of gene flow constraints during their evolutionary history
    corecore