328 research outputs found

    Avalanche statistics of sand heaps

    Full text link
    Large scale computer simulations are presented to investigate the avalanche statistics of sand piles using molecular dynamics. We could show that different methods of measurement lead to contradicting conclusions, presumably due to avalanches not reaching the end of the experimental table.Comment: 6 pages, 4 figure

    Thermodynamic properties of thin films of superfluid 3He-A

    Full text link
    The pairing correlations in superfluid He-3 are strongly modified by quasiparticle scattering off a surface or an interface. We present theoretical results and predictions for the order parameter, the quasiparticle excitation spectrum and the free energy for thin films of superfluid He-3. Both specular and diffuse scattering by a substrate are considered, while the free surface is assumed to be a perfectly reflecting specular boundary. The results are based on self-consistent calculations of the order parameter and quasiparticle excitation spectrum at zero pressure. We obtain new results for the phase diagram, free energy, entropy and specific heat of thin films of superfluid He-3.Comment: Replaced with an updated versio

    Two phase transitions in (s+id)-wave Bardeen-Cooper-Schrieffer superconductivity

    Full text link
    We establish universal behavior in temperature dependencies of some observables in (s+id)(s+id)-wave BCS superconductivity in the presence of a weak ss wave. There also could appear a second second-order phase transition. As temperature is lowered past the usual critical temperature TcT_c, a less ordered superconducting phase is created in dd wave, which changes to a more ordered phase in (s+id)(s+id) wave at Tc1T_{c1} (<Tc< T_c). The presence of two phase transitions manifest in two jumps in specific heat at TcT_c and Tc1T_{c1}. The temperature dependencies of susceptibility, penetration depth, and thermal conductivity also confirm the new phase transition.Comment: 6 pages, 5 post-script figures

    Quasiparticle Bound States and Low-Temperature Peaks of the Conductance of NIS Junctions in d-Wave Superconductors

    Full text link
    Quasiparticle states bound to the boundary of anisotropically paired superconductors, their contributions to the density of states and to the conductance of NIS junctions are studied both analytically and numerically. For smooth surfaces and real order parameter we find some general results for the bound state energies. In particular, we show that under fairly general conditions quasiparticle states with nonzero energies exist for momentum directions within a narrow region around the surface normal. The energy dispersion of the bound states always has an extremum for the direction along the normal. Along with the zero-bias anomaly due to midgap states, we find, for quasi two-dimensional materials, additional low-temperature peaks in the conductance of NIS junctions for voltages determined by the extrema of the bound state energies. The influence of interface roughness on the conductance is investigated within the framework of Ovchinnikov's model. We show that nonzero-bias peaks at low temperatures may give information on the order parameter in the bulk, even though it is suppressed at the surface.Comment: 14 pages, PostScrip

    Spontaneous flux in a d-wave superconductor with time-reversal-symmetry-broken pairing state at {110} boundaries

    Full text link
    The induction of an s-wave component in a d-wave superconductor is considered. Near the {110}-oriented edges of such a sample, the induced s-wave order parameter together with d-wave component forms a complex combination d+e^{i\phi} s, which breaks the time reversal symmetry (BTRS) of the pairing state. As a result, the spontaneous current is created. We numerically study the current distribution and the formation of the spontaneous flux induced by the current. We show that the spontaneous flux formed from a number of defect lines with {110} orientation has a measurable strength. This result may provide a unambiguous way to check the existence of BTRS pairing state at {110}-oriented boundaries.Comment: 4 pages, 2 ps-figures, content changed, references adde

    Thermodynamic Potential for Superfluid 3He in Aerogel

    Full text link
    We present a free energy functional for superfluid 3He in the presence of homogeneously distributed impurity disorder which extends the Ginzburg-Landau free energy functional to all temperatures. We use the new free energy functional to calculate the thermodynamic potential, entropy, heat capacity and density of states for the B-phase of superfluid 3He in homogeneous, isotropic aerogel.Comment: 10 pages, 4 figure

    The influence of chiral surface states on the London penetration depth in Sr2_2RuO4_4

    Full text link
    The London penetration depth for the unconventional superconductor Sr2_2RuO4_4 is analyzed assuming an order parameter which breaks time reversal symmetry and parity simultaneously. Such a superconducting state possesses chiral quasiparticle states with subgap energies at the surface. We show that these subgap states can give a significant contribution to the low-temperature behavior of the London penetration depth yielding a T2 T^2 power-law even though bulk quasiparticle spectrum is gapped. The presence of several electron bands gives rise to interband transition among the subgap surface states and influences the properties of the surface impedance. Furthermore, the surface states lead also to a non-linear Meissner effect.Comment: 4 pages, 1 figure, the definition of the Nambu field operator introduced, and some typos correcte

    Magnetic Field Effect in Josephson tunneling between d-Wave Superconductors

    Get PDF
    The magnetic field effect in the Josephson tunneling between two d-wave superconductors are investigated. When the crystal orientation of one (or each) superconductor relative to the interface normal is such that midgap states exist at the interface, there is a component of the tunneling current due to the midgap states. For a junction with a flat {001}|{110} or {100}|{110} interface, this component is the predominant contribution to the current. The predicted current-field dependence differs entirely from the conventional Fraunhofer pattern, in agreement with a published measurement. This is because, apart from the Fraunhofer factor, the critical current depends on the magnetic field B through the current density also which is a linear function of B for weak B.Comment: 5 pages, 2 figure

    Prunus hortulana: A Virus-Free, Nonsprouting Understock for Hardy Plums and Ornamental Prunus

    Get PDF
    For many years, nurseries in the North Central States have been propagating hardy plums and ornamental Prunus on Prunus americana seedling understocks. Hardiness and compatibility with many scion varieties, together with general availability, ease in growing and handling, and suitability for the budding operation, are recognized attributes which have encouraged almost universal use of this species for many years. From a nursery production standpoint it leaves little to be desired

    Discrete-Lattice Model for Surface Bound States and Tunneling in d-Wave Superconductors

    Full text link
    Surface bound states in a discrete-lattice model of a dx2y2d_{x^2 - y^2} cuprate superconductor are shown to be, in general, coherent superpositions of an incoming excitation and more than one outgoing excitation, and a simple graphical construction based on a surface Brillouin zone is developed to describe their nature. In addition, a momentum-dependent lifetime contribution to the width of these bound states as observed in tunneling experiments is derived and elucidated in physical terms.Comment: 4 pages, 1 figure, revte
    corecore