492 research outputs found

    Photoelectrochemical Behavior of Hierarchically Structured Si/WO_3 Core–Shell Tandem Photoanodes

    Get PDF
    WO_3 thin films have been deposited in a hierarchically structured core–shell morphology, with the cores consisting of an array of Si microwires and the shells consisting of a controlled morphology WO_3 layer. Porosity was introduced into the WO_3 outer shell by using a self-assembled microsphere colloidal crystal as a mask during the deposition of the WO_3 shell. Compared to conformal, unstructured WO_3 shells on Si microwires, the hierarchically structured core–shell photoanodes exhibited enhanced near-visible spectral response behavior, due to increased light absorption and reduced distances over which photogenerated carriers were collected. The use of structured substrates also improved the growth rate of microsphere-based colloidal crystals and suggests strategies for the use of colloidal materials in large-scale applications

    Si Microwire-Array Photocathodes Decorated with Cu Allow CO₂ Reduction with Minimal Parasitic Absorption of Sunlight

    Get PDF
    High loadings of Cu were integrated on the light-facing side of Si microwire arrays used under simulated sunlight for the photoelectrochemical reduction of CO₂ (aq) to hydrocarbons in 0.10 M KHCO₃ (aq). Radial-junction n⁺p-Si microwire arrays decorated with Cu exhibited absolute photocurrent densities comparable to an uncovered Si surface. Moreover, with respect to a Cu foil electrode, the positive shift in the onset potential for hydrocarbon formation at n⁺p-Si/Cu microwire arrays was equal to or greater than the photovoltage of the semiconductor alone. Selective electrodeposition of Cu on the tips and sidewalls of Si microwires was responsible for the minimal parasitic reflection and absorption exhibited by the catalyst, such that light-limited, absolute current densities >25 mA·cm⁻² were sustained for 48 h under simulated sunlight. Photoelectrodes prepared from semiconductors with low diode quality factors and electrocatalysts with large Tafel slopes are shown to benefit from increased microstructured surface area. Si microwire arrays are thus suitable for photoelectrochemical reactions requiring high loadings of metallic and reflective electrocatalysts

    Si Microwire-Array Photocathodes Decorated with Cu Allow CO₂ Reduction with Minimal Parasitic Absorption of Sunlight

    Get PDF
    High loadings of Cu were integrated on the light-facing side of Si microwire arrays used under simulated sunlight for the photoelectrochemical reduction of CO₂ (aq) to hydrocarbons in 0.10 M KHCO₃ (aq). Radial-junction n⁺p-Si microwire arrays decorated with Cu exhibited absolute photocurrent densities comparable to an uncovered Si surface. Moreover, with respect to a Cu foil electrode, the positive shift in the onset potential for hydrocarbon formation at n⁺p-Si/Cu microwire arrays was equal to or greater than the photovoltage of the semiconductor alone. Selective electrodeposition of Cu on the tips and sidewalls of Si microwires was responsible for the minimal parasitic reflection and absorption exhibited by the catalyst, such that light-limited, absolute current densities >25 mA·cm⁻² were sustained for 48 h under simulated sunlight. Photoelectrodes prepared from semiconductors with low diode quality factors and electrocatalysts with large Tafel slopes are shown to benefit from increased microstructured surface area. Si microwire arrays are thus suitable for photoelectrochemical reactions requiring high loadings of metallic and reflective electrocatalysts

    Effects of anti-triadin antibody on Ca2+ release from sarcoplasmic reticulum

    Get PDF
    AbstractThe monoclonal antibody, mAb GE 4.90, raised against triadin, a 95 kDa protein of sarcoplasmic reticulum (SR), inhibits the slow phase of Ca2+ release from SR following depolarization of the T-tubule moiety of the triad. The antibody has virtually no effect on the fast phase of depolarization-induced Ca2+ release nor on caffeine-induced Ca2+ release. Since the slow phase of depolarization-induced Ca2+ release is also inhibited by dihydropyridines (DHP), these results suggest that triadin may be involved in the functional coupling between the DHP receptor and the SR Ca2+ channel

    CO₂ Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination

    Get PDF
    Solar-driven reduction of carbon dioxide represents a carbon-neutral pathway for the synthesis of fuels and chemicals. We report here results for solar-driven CO₂ reduction using a gas diffusion electrode (GDE) directly powered by a photovoltaic cell. A GaInP/GaInAs/Ge triple-junction photovoltaic cell was used to power a reverse-assembled gas diffusion electrode employing a Ag nanoparticle catalyst layer. The device had a solar-to-CO energy conversion efficiency of 19.1% under simulated AM 1.5G illumination at 1 Sun. The use of a reverse-assembled GDE prevented transition from a wetted to a flooded catalyst bed and allowed the device to operate stably for >150 h with no loss in efficiency. Outdoor measurements were performed under ambient solar illumination in Pasadena, California, resulting in a peak solar-to-CO efficiency of 18.7% with a CO production rate of 47 mg·cm⁻² per day and a diurnal-averaged solar-to-fuel conversion efficiency of 5.8%

    Electrical and Photoelectrochemical Properties of WO_3/Si Tandem Photoelectrodes

    Get PDF
    Tungsten trioxide (WO_3) has been investigated as a photoanode for water oxidation reactions in acidic aqueous conditions. Though WO_3 is not capable of performing unassisted solar-driven water splitting, WO_3 can in principle be coupled with a low band gap semiconductor, such as Si, to produce a stand-alone, tandem photocathode/photoanode p-Si/n-WO_3 system for solar fuels production. Junctions between Si and WO_3, with and without intervening ohmic contacts, were therefore prepared and investigated in detail. Thin films of n-WO_3 that were prepared directly on p-Si and n-Si substrates exhibited an onset of photocurrent at a potential consistent with expectations based on the band-edge alignment of these two materials predicted by Andersen theory. However, n-WO_3 films deposited on Si substrates exhibited much lower anodic photocurrent densities (0.02 mA cm^(–2) at 1.0 V vs SCE) than identically prepared n-WO_3 films that were deposited on fluorine-doped tin oxide (FTO) substrates (0.45 mA cm^(–2) at 1.0 V vs SCE). Deposition of n-WO_3 onto a thin layer of tin-doped indium oxide (ITO) that had been deposited on a Si substrate yielded anodic photocurrent densities that were comparable to those observed for n-WO_3 films that had been deposited onto FTO-coated glass. An increased photovoltage was observed when an n-Si/ITO Schottky junction was formed in series with the n-WO_3 film, relative to when the WO_3 was deposited directly onto the Si. Hence, inclusion of the ITO layer allowed for tandem photoelectrochemical devices to be prepared using n-WO_3 and n-Si as the light absorbers

    An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO_2/Ni/Electrolyte Interfaces

    Get PDF
    The electrical and spectroscopic properties of the TiO_2/Ni protection layer system, which enables stabilization of otherwise corroding photoanodes, have been investigated in contact with electrolyte solutions by scanning-probe microscopy, electrochemistry and in-situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Specifically, the energy-band relations of the p+-Si/ALD-TiO_2/Ni interface have been determined for a selected range of Ni thicknesses. AP-XPS measurements using tender X-rays were performed in a three-electrode electrochemical arrangement under potentiostatic control to obtain information from the semiconductor near-surface region, the electrochemical double layer (ECDL) and the electrolyte beyond the ECDL. The degree of conductivity depended on the chemical state of the Ni on the TiO2surface. At low loadings of Ni, the Ni was present primarily as an oxide layer and the samples were not conductive, although the TiO_2 XPS core levels nonetheless displayed behavior indicative of a metal-electrolyte junction. In contrast, as the Ni thickness increased, the Ni phase was primarily metallic and the electrochemical behavior became highly conductive, with the AP-XPS data indicative of a metal-electrolyte junction. Electrochemical and microtopographical methods have been employed to better define the nature of the TiO_2/Ni electrodes and to contextualize the AP-XPS results
    corecore