1,708 research outputs found

    Optimal Estimation of Several Linear Parameters in the Presence of Lorentzian Thermal Noise

    Full text link
    In a previous article we developed an approach to the optimal (minimum variance, unbiased) statistical estimation technique for the equilibrium displacement of a damped, harmonic oscillator in the presence of thermal noise. Here, we expand that work to include the optimal estimation of several linear parameters from a continuous time series. We show that working in the basis of the thermal driving force both simplifies the calculations and provides additional insight to why various approximate (not optimal) estimation techniques perform as they do. To illustrate this point, we compare the variance in the optimal estimator that we derive for thermal noise with those of two approximate methods which, like the optimal estimator, suppress the contribution to the variance that would come from the irrelevant, resonant motion of the oscillator. We discuss how these methods fare when the dominant noise process is either white displacement noise or noise with power spectral density that is inversely proportional to the frequency (1/f1/f noise). We also construct, in the basis of the driving force, an estimator that performs well for a mixture of white noise and thermal noise. To find the optimal multi-parameter estimators for thermal noise, we derive and illustrate a generalization of traditional matrix methods for parameter estimation that can accommodate continuous data. We discuss how this approach may help refine the design of experiments as they allow an exact, quantitative comparison of the precision of estimated parameters under various data acquisition and data analysis strategies.Comment: 16 pages, 10 figures. Accepted for publication in Classical and Quantum Gravit

    First U.S. manned six-pass orbital mission /Mercury-Atlas 8, spacecraft 16/

    Get PDF
    Description and performance analysis of manned six-pass orbital mission /Mercury-Atlas 8

    Second United States manned three-pass orbital mission/Mercury-Atlas 7, spacecraft 18/. Description and performance analysis

    Get PDF
    Orbital mission Mercury-Atlas 7, spacecraft 18 - prelaunch and launch, flight control, recovery, aeromedical analysis, astronaut activities, and spacecraft performance and descriptio

    Bulk, rare earth and other trace elements in Apollo 14 and 15 and Luna 16 samples

    Get PDF
    The chemical abundances were measured by instrumental and radiochemical neutron activation analysis in a variety of lunar specimens. Apollo 14 soils are characterized by significant enrichments of Al2O3, Na2O and K2O and depletions of TiO2, FeO, MnO and Cr2O3 relative to Apollo 11 and to most of Apollo 12 soils. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within approximately 200 m from the lunar module. Two Luna 16 breccias are similar in composition to Luna 16 soils. Four Apollo 15 soils (LM, STA 4, 9, and 9a) have variable compositions. Interelement correlations between MnO-FeO, Sc-FeO, V-Cr2O3 and K2O-Hf negate the hypothesis that howardite achondrites may be primitive lunar matter, argue against the fission hypothesis for the origin of the moon, and precludes any selective large scale volatilization of alkalies during lunar magmatic events

    Effect of tip clearance on performance of small axial hydraulic turbine

    Get PDF
    The first two stages of a six stage liquid oxygen turbine were tested in water. One and two stage performance was determined for one shrouded and two unshrouded blade end configurations over ranges of clearance and blade-jet speed ratio. First stage, two stage, and second stage efficiencies are included as well as the effect of clearance on mass flow for two stage operation

    A New Version of Reimers' law of Mass Loss Based on a Physical Approach

    Full text link
    We present a new semi-empirical relation for the mass loss of cool stellar winds, which so far has frequently been described by "Reimers' law". Originally, this relation was based solely on dimensional scaling arguments without any physical interpretation. In our approach, the wind is assumed to result from the spill-over of the extended chromosphere, possibly associated with the action of waves, especially Alfven waves, which are used as guidance in the derivation of the new formula. We obtain a relation akin to the original Reimers law, but which includes two new factors. They reflect how the chromospheric height depends on gravity and how the mechanical energy flux depends, mainly, on effective temperature. The new relation is tested and sensitively calibrated by modelling the blue end of the Horizontal Branch of globular clusters. The most significant difference from mass loss rates predicted by the Reimers relation is an increase by up to a factor of 3 for luminous late-type (super-)giants, in good agreement with observations.Comment: 12 pages, 4 figures, accepted by ApJ Letter
    corecore