3,355 research outputs found

    Stress relief as the driving force for self-assembled Bi nanolines

    Get PDF
    Stress resulting from mismatch between a substrate and an adsorbed material has often been thought to be the driving force for the self-assembly of nanoscale structures. Bi nanolines self-assemble on Si(001), and are remarkable for their straightness and length -- they are often more than 400 nm long, and a kink in a nanoline has never been observed. Through electronic structure calculations, we have found an energetically favourable structure for these nanolines that agrees with our scanning tunneling microscopy and photoemission experiments; the structure has an extremely unusual subsurface structure, comprising a double core of 7-membered rings of silicon. Our proposed structure explains all the observed features of the nanolines, and shows that surface stress resulting from the mismatch between the Bi and the Si substrate are responsible for their self-assembly. This has wider implications for the controlled growth of nanostructures on semiconductor surfaces.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Capacity strengthening in malaria research: the Gates Malaria Partnership.

    No full text
    The Gates Malaria Partnership (GMP) includes five African and four European partner institutions. Its research programme has five priority areas involving an extensive range of field-based studies. GMP research has contributed significantly to the development of new research consortia investigating strategies for improving means of malaria control, and has already had an impact on policy and practice. A substantial investment in innovative training activities in malaria has enhanced knowledge and practice of malaria control at all levels from policy making to local community involvement. Capacity development, notably through a PhD programme, has been an underlying feature of all aspects of the programme

    Soliton effects in dangling-bond wires on Si(001)

    Full text link
    Dangling bond wires on Si(001) are prototypical one dimensional wires, which are expected to show polaronic and solitonic effects. We present electronic structure calculations, using the tight binding model, of solitons in dangling-bond wires, and demonstrate that these defects are stable in even-length wires, although approximately 0.1 eV higher in energy than a perfect wire. We also note that in contrast to conjugated polymer systems, there are two types of soliton and that the type of soliton has strong effects on the energetics of the bandgap edges, with formation of intra-gap states between 0.1 eV and 0.2 eV from the band edges. These intra-gap states are localised on the atoms comprising the soliton.Comment: 6 pages, 3 figures, 3 tables, submitted to Phys. Rev.

    Long-range electron transfer in structurally engineered pentaammineruthenium (histidine-62) cytochrome c

    Get PDF
    In many biological processes, long-range electron transfer (ET) plays a key role. When the three-dimensional structures of proteins are accurately known, use of modified proteins and protein-protein complexes provides an experimental approach to study ET rates between two metal centers. For Ru(His)- modified proteins, the introduction of histidine residues at any desired surface location by site-directed mutagenesis opens the way for systematic investigations of ET pathways

    Endotaxial Si nanolines in Si(001):H

    Full text link
    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure

    An X-Ray Microanalytical Study on the Effects of Ouabain and N-Ethyl Maleimide on the Elemental Concentrations in Malpighian Tubule Cells of Locusta

    Get PDF
    X-ray microanalysis was used to study elemental distribution in Malpighian tubule cells of Locusta migratoria and how these are affected by the replacement of bathing medium K+ with Rb+ and by inclusion of the transport inhibitors ouabain and n-ethyl maleimide (NEM) in standard (K+-containing) and Rb+-Ringer (K+-free) solutions. Incubation of tubules in standard Ringer containing 1 mM ouabain dramatically affected the intracellular levels of K and Na. The intracellular K concentration fell and Na concentration increased in all regions studied. Despite this, a gradient of increasing K concentration from basal to apical cell surface was maintained. Ouabain also reduced the intracellular levels of Rb when applied in Rb+-Ringer. Cl and P levels were unaffected by ouabain treatment. Incubation in standard and Rb+-Ringer solutions containing 1μM NEM caused a significant increase in intracellular K levels in all regions of the cell compared with that observed in the absence of NEM. Rb levels were little affected by NEM except in the apical cytoplasm and microvillar regions where they were significantly reduced compared with Rb+-Ringer controls. NEM effected a significant increase in cellular levels of Na under Rb+-Ringer conditions. Intracellular Cl and P were not significantly affected by NEM. These results are discussed in relation to proposed mechanisms for the transport of ions and water across this secretory epithelium, with particular emphasis on the role of K+ as the \u27prime mover\u27 in this process

    Large-scale electronic structure theory for simulating nanostructure process

    Full text link
    Fundamental theories and practical methods for large-scale electronic structure calculations are given, in which the computational cost is proportional to the system size. Accuracy controlling methods for microscopic freedoms are focused on two practical solver methods, Krylov-subspace method and generalized-Wannier-state method. A general theory called the 'multi-solver' scheme is also formulated, as a hybrid between different solver methods. Practical examples are carried out in several insulating and metallic systems with 10^3-10^5 atoms. All the theories provide general guiding principles of constructing an optimal calculation for simulating nanostructure processes, since a nanostructured system consists of several competitive regions, such as bulk and surface regions, and the simulation is designed to reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    One dimensional Si-in-Si(001) template for single-atom wire growth

    Full text link
    Single atom metallic wires of arbitrary length are of immense technological and scientific interest. We describe a novel silicon-only template enabling the self-organised growth of isolated micrometer long surface and subsurface single-atom chains. It consists of a one dimensional, defect-free reconstruction - the Haiku core, here revealed for the first time in details - self-assembled on hydrogenated Si(001) terraces, independent of any step edges. We discuss the potential of this Si-in-Si template as an appealing alternative to vicinal surfaces for nanoscale patterning.Comment: 3 pages, 2 figure

    Start to end simulations of the ERL prototype at Daresbury Laboratory

    Get PDF
    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will serve as a research and development facility for the study of beam dynamics and accelerator technology important to the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives of the ERLP are the demonstration of energy recovery and of energy recovery from a beam disrupted by an FEL interaction as supplied by an infrared oscillator system. In this paper we present start-to-end simulations of the ERLP including such an FEL interaction. The beam dynamics in the highbrightness injector, which consists of a DC photocathode Gun and a superconducting booster, have been modelled using the particle tracking code ASTRA. After the booster the particles have been tracked with the code elegant. The 3D code GENESIS 1.3 was used to model the FEL interaction with the electron beam at 35 MeV. A brief summary of impedance and wakefield calculations for the whole machine is also given

    Memory, learning and language in autism spectrum disorder

    Get PDF
    Background and aims: The ‘dual-systems’ model of language acquisition has been used by Ullman and colleagues to explain patterns of strength and weakness in the language of higher-functioning people with autism spectrum disorder (ASD). Specifically, intact declarative/explicit learning is argued to compensate for a deficit in non-declarative/implicit procedural learning, constituting an example of the so-called ‘see-saw’ effect. Ullman and Pullman (2015) extended their argument concerning a see-saw effect on language in ASD to cover other perceived anomalies of behaviour, including impaired acquisition of social skills. The aim of this paper is to present a critique of Ullman and colleagues’ claims, and to propose an alternative model of links between memory systems and language in ASD. Main contribution: We argue that a 4-systems model of learning, in which intact semantic and procedural memory are used to compensate for weaknesses in episodic memory and perceptual learning, can better explain patterns of language ability across the autistic spectrum. We also argue that attempts to generalise the ‘impaired implicit learning/spared declarative learning’ theory to other behaviours in ASD are unsustainable. Conclusions: Clinically significant language impairments in ASD are under-researched, despite their impact on everyday functioning and quality of life. The relative paucity of research findings in this area lays it open to speculative interpretation which may be misleading. Implications: More research is need into links between memory/learning systems and language impairments across the spectrum. Improved understanding should inform therapeutic intervention, and contribute to investigation of the causes of language impairment in ASD with potential implications for prevention
    corecore