1,596 research outputs found

    Absent anterior cruciate ligament

    Get PDF
    This case report presents the MRI findings of aplasia of the anterior cruciate ligament with associated hypoplasia of the posterior cruciate ligament (Manner type 2). Radiographically the presence of a shallow femoral notch and hypoplastic tibial spines (the so-called "dromedar" sign) can aid in the diagnosis. Operative treatment is often not indicated since the congenital absence of the ACL implies long-standing altered biomechanics to which the knee has well adapted in the majority of cases

    Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity

    Get PDF
    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC50-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg−1. In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action

    Evaluation of antimicrobial effectiveness of pimaricin-loaded thermosensitive nanohydrogels in grape juice

    Get PDF
    Pimaricin-loaded poly(N-isopropylacrylamide) nanohydrogels with and without acrylic acid, were evaluated as food-spoilage inhibitors in a model system and a real food product: grape juice. Pimaricin was proposed as a non-allergenic alternative to sulphites for protecting juices against recontamination. However, pimaricin may degrade under conditions and treatments (heating, acidification, lighting) commonly applied in producing fresh juices. Nanohydrogel encapsulation may be a feasible procedure to avoid pimaricin degradation, improving its antimicrobial activity. Pimaricin-free nanohydrogels did not affect the growth of the indicator yeast either in the food model system or in grape juice. Conversely, pimaricin-loaded nanohydrogels effectively inhibited the growth of the indicator yeast. In some cases, the inhibition was extended even further than using free pimaricin. For instance, in the food model system, pimaricin-loaded nanohydrogels with acrylic acid (NPPNIPA-20AA(5)) prevented the yeast growth for more than 81 h while free pimaricin was only effective for 12 h. Despite pimaricin-loaded nanohydrogels without acrylic acid (NPPNIPA(5)) were able to reduce maximum yeast growth, as in all treatments with pimaricin, the extent of the inhibitory effect was not significantly (p>0.05) different to that achieved with free pimaricin. In grape juice, both free pimaricin and NPPNIPA-20AA(5) treatment completely inhibited the growth of the indicator yeast until the end of the bioassay. However, the latter provided similar inhibition levels using a smaller amount of pimaricin due to PNIPA-20AA(5) protection and its controlled release from the nanohydrogel. Therefore, nanohydrogel encapsulation may help to optimise antifungal treatments and decrease the incidence of food allergies.Funded by grant (MAT 2006-11662-CO3-CO2-C01/MAT 2010-21509-C03-01/EUI 2008-00115) from the “Ministerio de Educación y Ciencia” (Spain). Grant (SFRH/BPD/87910/2012) from the Fundação para a Ciência e Tecnologia (FCT, Portugal). Marie Curie COFUND Postdoctoral Research Fellow

    Functional characterisation and antimicrobial efficiency assessment of smart nanohydrogels containing natamycin incorporated into polysaccharide-based films

    Get PDF
    The potential application of polysaccharide-based films containing smart nanohydrogels for the controlled release of food preservatives is demonstrated here. Smart active packaging is the most promising alternative to traditional packaging as it provides a controlled antimicrobial effect, which allows reducing the amount of preservatives in the food bulk, releasing them only on demand. This work evaluates the usefulness of smart thermosensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels with or without acrylic acid (AA) incorporated into polysaccharide-based films (GA) to transport natamycin and release it as a response to environmental triggers. Release kinetics in liquid medium from GA films containing PNIPA/AA nanohydrogels (GA-PNIPA(5) and GA-PNIPA-20AA(5)) presented a characteristic feature regarding the films without nanohydrogels that was the appearance of a lag time in natamycin release, able to reach values of around 35 h. Another important feature of natamycin release kinetics was the fact that the release from GA-PNIPA/AA films only occurred when temperature was increased, so that the natamycin release was restricted to when there is a risk of growth of microorganisms that cause food spoilage or the development of pathogenic microorganisms. Additionally, it could be observed that the relative fraction of natamycin released from GA-PNIPA/AA films was significantly (p<0.05) higher than that released from GA films loaded with the same amount of free natamycin. It can be hypothesised that the encapsulation of natamycin into nanohydrogels helped it to be released from GA films, creating reservoirs of natamycin into the films and, therefore, facilitating its diffusion through the film matrix when the nanohydrogel collapses. In a solid medium, the low water availability limited natamycin release from GA-PNIPA/AA films restricting the on/off release mechanism of PNIPA/AA nanohydrogels and favouring the hydrophobic interactions between natamycin and polymer chains at high temperatures. Despite the low natamycin release in solid media, antimicrobial efficiency of GA-PNIPA(5) films containing natamycin in acidified agar plates was higher than that obtained with GA films without natamycin and GA films with free natamycin, probably due to the protecting effect against degradation when natamycin was included in the nanohydrogels, allowing its release only when the temperature increased.Clara Fucinos and Miguel A. Cerqueira are recipients of a fellowship (SFRH/BPD/87910/2012 and SFRH/BPD/72753/2010, respectively) from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN, and FSE Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes", Ref. NORTE-07-0124-FEDER-000028 co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER and the project from the "Ministerio de Educacion y Ciencia" (Spain) "Nanohidrogeles inteligentes sensibles a cambios de pH y Temperatura: Diseno, sintesis y aplicacion en terapia del cancer y el envasado activo de alimentos", Ref. MAT2010-21509-C03-01

    The Conserved Candida albicans CA3427 Gene Product Defines a New Family of Proteins Exhibiting the Generic Periplasmic Binding Protein Structural Fold

    Get PDF
    Nosocomial diseases due to Candida albicans infections are in constant rise in hospitals, where they cause serious complications to already fragile intensive care patients. Antifungal drug resistance is fast becoming a serious issue due to the emergence of strains resistant to currently available antifungal agents. Thus the urgency to identify new potential protein targets, the function and structure of which may guide the development of new antifungal drugs. In this context, we initiated a comparative genomics study in search of promising protein coding genes among the most conserved ones in reference fungal genomes. The CA3427 gene was selected on the basis of its presence among pathogenic fungi contrasting with its absence in the non pathogenic Saccharomyces cerevisiae. We report the crystal 3D-structure of the Candida albicans CA3427 protein at 2.1 Å resolution. The combined analysis of its sequence and structure reveals a structural fold originally associated with periplasmic binding proteins. The CA3427 structure highlights a binding site located between the two protein domains, corresponding to a sequence segment conserved among fungi. Two crystal forms of CA3427 were found, suggesting that the presence or absence of a ligand at the proposed binding site might trigger a “Venus flytrap” motion, coupled to the previously described activity of bacterial periplasmic binding proteins. The conserved binding site defines a new subfamily of periplasmic binding proteins also found in many bacteria of the bacteroidetes division, in a choanoflagellate (a free-living unicellular and colonial flagellate eukaryote) and in a placozoan (the closest multicellular relative of animals). A phylogenetic analysis suggests that this gene family originated in bacteria before its horizontal transfer to an ancestral eukaryote prior to the radiation of fungi. It was then lost by the Saccharomycetales which include Saccharomyces cerevisiae

    New Strategy for Rapid Diagnosis and Characterization of Fungal Infections: The Example of Corneal Scrapings

    Get PDF
    PURPOSE: The prognosis of people infected with Fungi especially immunocompromised depends on rapid and accurate diagnosis to capitalize on time administration of specific treatments. However, cultures produce false negative results and nucleic-acid amplification techniques require complex post-amplification procedures to differentiate relevant fungal types. The objective of this work was to develop a new diagnostic strategy based on real-time polymerase-chain reaction high-resolution melting analysis (PCR-HRM) that a) detects yeasts and filamentous Fungi, b) differentiates yeasts from filamentous Fungi, and c) discriminates among relevant species of yeasts. METHODS: PCR-HRM detection limits and specificity were assessed with a) isolated strains; b) human blood samples experimentally infected with Fungi; c) blood experimentally infected with other infectious agents; d) corneal scrapings from patients with suspected fungal keratitis (culture positive and negative) and e) scrapings from patients with suspected bacterial, viral or Acanthamoeba infections. The DNAs were extracted and mixed with primers diluted in the MeltDoctor® HRM Master Mix in 2 tubes, the first for yeasts, containing the forward primer CandUn (5'CATGCCTGTTTGAGCGTC) and the reverse primer FungUn (5'TCCTCCGCTT ATTGATATGCT) and the second for filamentous Fungi, containing the forward primer FilamUn (5'TGCCTGTCCGAGCGTCAT) and FungUn. Molecular probes were not necessary. The yields of DNA extraction and the PCR inhibitors were systematically monitored. RESULTS: PCR-HRM detected 0.1 Colony Forming Units (CFU)/µl of yeasts and filamentous Fungi, differentiated filamentous Fungi from yeasts and discriminated among relevant species of yeasts. PCR-HRM performances were higher than haemoculture and sensitivity and specificity was 100% for culture positive samples, detecting and characterizing Fungi in 7 out 10 culture negative suspected fungal keratitis. CONCLUSIONS: PCR-HRM appears as a new, sensitive, specific and inexpensive test that detects Fungi and differentiates filamentous Fungi from yeasts. It allows direct fungal detection from clinical samples and experimentally infected blood in less than 2.30 h after DNA extraction

    Search for nonresonant Higgs boson pair production in the four leptons plus two b jets final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2206.10657v2 [hep-ex], https://arxiv.org/abs/2206.10657 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at this http URL (CMS Public Pages). Report number: CMS-HIG-20-004, CERN-EP-2022-114.The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb−1. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ, defined as the ratio of the observed HH production rate in the HH→ ZZ∗b b ¯ → 4 ℓb b ¯ decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λ HHH with respect to the SM value are investigated. The coupling modifier κλ, defined as λ HHH divided by its SM prediction, is constrained to be within the observed (expected) range −8.8 (−9.8) < κλ < 13.4 (15.0) at 95% confidence level. [Figure not available: see fulltext.].SCOAP3
    corecore