66 research outputs found

    Аксиологоческое пространство культуры

    Get PDF
    Introduction. This study was performed to assess the applicability of the WHO Maternal Near Miss Tool (MNM Tool) and the organ dysfunction criteria in a high-income country. Material and methods. The MNM tool was applied to 2552 women who died of pregnancy-related causes or sustained severe acute maternal morbidity between August 2004 and August 2006 in one of the 98 hospitals with a maternity unit in the Netherlands. Fourteen (0.6%) cases had insufficient data for application. Each case was assessed according to the three main "MNM categories" specified in the MNM tool and their subcategory criteria: five disease-, four intervention- and seven organ dysfunction-based criteria. Potentially life-threatening conditions (disease-based inclusions) and life-threatening cases (organ dysfunction-based inclusions) were differentiated according to WHO methodology. Outcomes were incidence of all (sub)categories and case-fatality rates. Results. Of the 2538 cases, 2308 (90.9%) women fulfilled disease-based, 2116 (83.4%) intervention-based and 1024 (40.3%) organ dysfunction-based criteria. Maternal death occurred in 48 women, of whom 23 (47.9%) fulfilled disease-based, 33 (68.8%) intervention-based and 31 (64.6%) organ dysfunction-based criteria. Case-fatality rates were 23/2308 (1.0%) for cases fulfilling the disease-based criteria, 33/2116 (1.6%) for intervention-based criteria and 31/1024 (3.0%) for women fulfilling the organ dysfunction-based criteria. Conclusions. In the Netherlands, where advanced laboratory and clinical monitoring are available, organ dysfunction-based criteria of the MNM tool failed to identify nearly two-thirds of sustained severe acute maternal morbidity cases and more than one-third of maternal deaths. Disease-based criteria remain important, and using only organ dysfunction-based criteria would lead to underestimating severe acute maternal morbidity

    Risk factors for infectious complications after open fractures; a systematic review and meta-analysis

    Get PDF
    __Purpose__ The purpose of this study was to identify risk factors for the development of infection after open fracture fixation. __Methods__ A comprehensive search in all scientific literature of the last 30 years was performed in order to identify patient-, trauma-, diagnosis- and treatment-related risk f

    Eicosapentaenoic acid incorporation in membrane phospholipids modulates receptor-mediated phospholipase C and membrane fluidity in rat ventricular myocytes in culture

    Get PDF
    The influence of increased incorporation of linoleic acid (18:2n-6) and eicosapentaenoic acid (20:5n-3) in membrane phospholipids on receptor-mediated phospholipase Cβ (PLC-β) activity in cultured rat ventricular myocytes was investigated. For this purpose, cells were grown for 4 days in control, stearic acid (18:0)/oleic acid (18:1n-9), 18:2n-6 and 20:5n-3 enriched media, and subsequently assayed for the basal- and phenylephrine- or endothelin-1-induced total inositol phosphate formation. The various fatty acid treatments resulted in the expected alterations of fatty acid composition of membrane phospholipids. In 18:2n-6-treated cells, the incorporation of this 18:2n-6 in the phospholipids increased from 17.1 mol % in control cells to 38.9 mol %. In 20:5n-3-treated cells, incorporation of 20: 5n-3 and docosapentaenoic acid (22:5n-3) in the phospholipids increased from 0.5 and 2.7 mol % in control cells to 23.2 and 9.7 mol %, respectively. When 20:5n-3-treated cells were stimulated with phenylephrine or endothelin-1, the inositolphosphate production decreased by 33.2% and increased by 43.4%, respectively, as compared to cells grown in control medium. No efffects were seen in 18:2n-6-treated cells. When 18:0/18:1n-9-treated cells were stimulated with endothelin-1, inositolphosphate formation increased by 26.4%, whereas phenylephrine-stimulated inositolphosphate formation was not affected. In saponin-permeabilized cells, that were pre-treated with 20:5n-3, the formation of total inositolphosphates after stimulation with GTPγS, in the presence of Ca2+, was inhibited 19.3%. This suggests that the 20:5n-3 effect on intact cardiomyocytes could be exerted either on the level of agonist-receptor, receptor-GTP-binding-protein coupling or GTP-binding-protein-PLC-β interaction. Investigation of the time course of saponin-induced permeabilization of the cardiomyocytes, measured by the release of lactate dehydrogenase, unmasked a slight decrease in the rate of permeabilization by 20:5n-3 pretreatment, indicating a protective effect. This led the authors to measure the cholesterol/phospholipid molar ratio, the double bond index of membrane phospholipids, and the membrane fluidity; the latter by using a diphenylhexatriene probe. In 20: 5n-3-pretreated cells, a strong increase in the cholesterol/phospholipid molar ratio (from 0.23 to 0.39), a marked increase in the double bond index (from 1.76 to 2.33), and a slight decrease in fluidity (steady-state anisotropy r(ss) of the diphenylhexatriene probe increased from 0.196 to 0.217) were observed. Thus, treatment of cardiomyocytes for 4 days with 20:5n-3, but not with 18:2n-6, causes alterations of receptor-mediated phospholipase Cβ activity. A causal relationship may exist between the 20:5 n-3-induced alterations of the physicochemical properties in the bilayer and of the agonist-stimulated phosphatidylinositol cycle activity

    Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter

    Get PDF
    BACKGROUND: A decrease in sarcoplasmic reticulum Ca(2+) pump (SERCA2) activity is believed to play a role in the impairment of diastolic function of the failing heart. Because the expression ratio of phospholamban (PL) to SERCA2 may be a target to improve contractile dysfunction, a PL antisense RNA strategy was developed under the control of either a constitutive cytomegalovirus (CMV) or an inducible atrial natriuretic factor (ANF) promoter. The latter is upregulated in hypertrophied and failing heart, allowing "induction-by-disease" gene therapy. METHODS AND RESULTS: Part of the PL cDNA was cloned in antisense and sense directions into adenovectors under the control of either a CMV (Ad5CMVPLas and Ad5CMVPLs, respectively) or ANF (Ad5ANFPLas and Ad5ANFPLs, respectively) promoter. Infection of cultured rat neonatal cardiomyocytes with Ad5CMVPLas reduced PL mRNA to 30+/-7% of baseline and PL protein to 24+/-3% within 48 and 72 hours, respectively. The effects were vector dose dependent. Ad5CMVPLas increased the Ca(2+) sensitivity of SERCA2 and reduced the time to 50% recovery of the Ca(2+) transient. A decrease of PL protein was also achieved by infection with Ad5ANFPLas, and the presence of the hypertrophic stimulus, endothelin-1, led to enhanced downregulation of PL. The adenovectors expressing PL sense RNA had no effect on any of the tested parameters. CONCLUSIONS: Vector-mediated PL antisense RNA expression may become a feasible approach to modulate myocyte Ca(2+) homeostasis in the failing heart. The inducible ANF promoter for the first time offers the perspective for induction-by-disease gene therapy, ie, selective expression of therapeutic genes in hypertrophied and failing cardiomyocytes

    DNA damage-induced histone H1 ubiquitylation is mediated by HUWE1 and stimulates the RNF8-RNF168 pathway

    Get PDF
    The DNA damage response (DDR), comprising distinct repair and signalling pathways, safeguards genomic integrity. Protein ubiquitylation is an important regulatory mechanism of the DDR. To study its role in the UV-induced DDR, we characterized changes in protein ubiquitylation following DNA damage using quantitative di-Gly proteomics. Interestingly, we identified multiple sites of histone H1 that are ubiquitylated upon UV-damage. We show that UV-dependent histone H1 ubiquitylation at multiple lysines is mediated by the E3-ligase HUWE1. Recently, it was shown that poly-ubiquitylated histone H1 is an important signalling intermediate in the double strand break response. This poly-ubiquitylation is dependent on RNF8 and Ubc13 which extend pre-existi

    Management of critical-sized bone defects in the treatment of fracture-related infection: a systematic review and pooled analysis

    Get PDF
    Purpose: This systematic review determined the reported treatment strategies, their individual success rates, and other outcome parameters in the management of critical-sized bone defects in fracture-related infection (FRI) patients between 1990 and 2018. Methods: A systematic literature search on treatment and outcome of critical-sized bone defects in FRI was performed. Treatment strategies identified were, autologous cancellous grafts, autologous cancellous grafts combined with local antibiotics, the induced membrane technique, vascularized grafts, Ilizarov bone transport, and bone transport combined with local antibiotics. Outcomes were bone healing and infection eradication after primary surgical protocol and recurrence of FRI and amputations at the end of study period. Results: Fifty studies were included, describing 1530 patients, the tibia was affected in 82%. Mean age was 40 years (range 6–80), with predominantly male subjects (79%). Mean duration of infection was 17 months (range 1–624) and mean follow-up 51 months (range 6–126). After initial protocolized treatment, FRI was cured in 83% (95% CI 79–87) of all cases, increasing to 94% (95% CI 92–96) at the end of each individual study. Recurrence of infection was seen in 8% (95% CI 6–11) and amputation in 3% (95% CI 2–3). Final outcomes overlapped across treatment strategies. Conclusion: Results should be interpreted with caution due to the retrospective and observational design of most studies, the lack of clear classification systems, incomplete data reports, potential underreporting of adverse outcomes, and heterogeneity in patient series. A consensus on classification, treatment protocols, and outcome is needed to improve reliability of future studies

    Semi-quantitative proteomics of mammalian cells upon short-term exposure to nonionizing electromagnetic fields

    Get PDF
    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein-and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    Insights into treatment and outcome of fracture-related infection: a systematic literature review

    Get PDF
    Introduction: Standardized guidelines for treatment of fracture-related infection (FRI) are lacking. Worldwide many treatment protocols are used with variable success rates. Awareness on the need of standardized, evidence-based guidelines has increased in recent years. This systematic literature review gives an overview of available diagnostic criteria, classifications, treatment protocols, and related outcome measurements for surgically treated FRI patients. Methods: A comprehensive search was performed in all scientific literature since 1990. Studies
    corecore