136 research outputs found

    t(9;11)(p21;q23) KMT2A/MLLT3

    Get PDF
    Review on t(9;11)(p21;q23), with data on clinics, and the genes involved

    Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis

    Get PDF
    Human testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been identified with an additional high-level amplification of a restricted region of 12p including the K-RAS proto-oncogene. Here we show that the incidence of these restricted 12p amplifications is approximately 8% in primary TGCTs. Within a single cell formation of i(12p) and restricted 12p amplification is mutually exclusive. The borders of the amplicons cluster in short regions, and the amplicon was never found in the adjacent carcinoma in situ cells. Seminomas with the restricted 12p amplification virtually lacked apoptosis and the tumor cells showed prolonged in vitro survival like seminoma cells with a mutated RAS gene. However, no differences in proliferation index between these different groups of seminomas were found. Although patients with a seminoma containing a homogeneous restricted 12p amplification presented at a significantly younger age than those lacking it, the presence of a restricted 12p amplification/RAS mutation did not predict the stage of the disease at clinical presentation and the treatment response of primary seminomas. In 55 primary and metastatic tumors from 44 different patients who failed cisplatinum-based chemotherapy, the restricted 12p amplification and RAS mutations had the same incidence a

    The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA insterstrand cross-link-induced double-strand breaks

    Get PDF
    Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination

    Improved Outcome for ALL by Prolonging Therapy for IKZF1 Deletion and Decreasing Therapy for Other Risk Groups

    Get PDF
    PURPOSE: The ALL10 protocol improved outcomes for children with ALL by stratifying and adapting therapy into three minimal residual disease-defined risk groups: standard risk, medium risk (MR), and high risk. IKZF1-deleted (IKZF1del) ALL in the largest MR group still showed poor outcome, in line with protocols worldwide, accounting for a high number of overall relapses. ALL10 showed high toxicity in Down syndrome (DS) and excellent outcome in ETV6::RUNX1 ALL. Poor prednisone responders (PPRs) were treated as high risk in ALL10. In ALL11, we prolonged therapy for IKZF1del from 2 to 3 years. We reduced therapy for DS by omitting anthracyclines completely, for ETV6::RUNX1 in intensification, and for PPR by treatment as MR. METHODS:Eight hundred nineteen patients with ALL (age, 1-18 years) were enrolled on ALL11 and stratified as in ALL10. Results were compared with those in ALL10. RESULTS: The five-year overall survival (OS), event-free survival (EFS), cumulative risk of relapse (CIR), and death in complete remission on ALL11 were 94.2% (SE, 0.9%), 89.0% (1.2), 8.2% (1.1), and 2.3% (0.6), respectively. Prolonged maintenance for IKZF1del MR improved 5-year CIR by 2.2-fold (10.8% v 23.4%; P = .035) and EFS (87.1% v 72.3%; P = .019). Landmark analysis at 2 years from diagnosis showed a 2.9-fold reduction of CIR (25.6%-8.8%; P = .008) and EFS improvement (74.4%-91.2%; P = .007). Reduced therapy did not abrogate 5-year outcome for ETV6::RUNX1 (EFS, 98.3%; OS, 99.4%), DS (EFS, 87.0%; OS, 87.0%), and PPR (EFS, 81.1%; OS, 94.9%). CONCLUSION: Children with IKZF1del ALL seem to benefit from prolonged maintenance therapy. Chemotherapy was successfully reduced for patients with ETV6::RUNX1, DS, and PPR ALL. It has to be noted that these results were obtained in a nonrandomized study using a historical control group.</p

    ACO2 homozygous missense mutation associated with complicated Hereditary spastic paraplegia

    Get PDF
    Objective: To identify the clinical characteristics and genetic etiology of a family affected with hereditary spastic paraplegia (HSP). Methods: Clinical, genetic, and functional analyses involving genome-wide linkage coupled to whole-exome sequencing in a consanguineous family with complicated HSP. Results: A homozygous missense mutation was identified in the ACO2 gene (c.1240T>G p.Phe414Val) that segregated with HSP complicated by intellectual disability and microcephaly. Lymphoblastoid cell lines of homozygous carrier patients revealed significantly decreased activity of the mitochondrial aconitase enzyme and defective mitochondrial respiration. ACO2 encodes mitochondrial aconitase, an essential enzyme in the Krebs cycle. Recessive mutations in this gene have been previously associated with cerebellar ataxia. Conclusions: Our findings nominate ACO2 as a disease-causing gene for autosomal recessive complicated HSP and provide further support for the central role of mitochondrial defects in the pathogenesis of HSP

    Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome

    Get PDF
    Substantial heterogeneity within mutant TP53 acute myeloid leukemia (AML) and myelodysplastic syndrome with excess of blast (MDS-EB) precludes the exact assessment of prognostic impact for individual patients. We performed in-depth clinical and molecular analysis of mutant TP53 AML and MDS-EB to dissect the molecular characteristics in detail and determine its impact on survival. We performed next-generation sequencing on 2200 AML/MDS-EB specimens and assessed the TP53 mutant allelic status (mono- or bi-allelic), the number of TP53 mutations, mutant TP53 clone size, concurrent mutations, cytogenetics, and mutant TP53 molecular minimal residual disease and studied the associations of these characteristics with overall survival. TP53 mutations were detected in 230 (10.5%) patients with AML/MDS-EB with a median variant allele frequency of 47%. Bi-allelic mutant TP53 status was observed in 174 (76%) patients. Multiple TP53 mutations were found in 49 (21%) patients. Concurrent mutations were detected in 113 (49%) patients. No significant difference in any of the aforementioned molecular characteristics of mutant TP53 was detected between AML and MDS-EB. Patients with mutant TP53 have a poor outcome (2-year overall survival, 12.8%); however, no survival difference between AML and MDS-EB was observed. Importantly, none of the molecular characteristics were significantly associated with survival in mutant TP53 AML/MDS-EB. In most patients, TP53 mutations remained detectable in complete remission by deep sequencing (73%). Detection of residual mutant TP53 was not associated with survival. Mutant TP53 AML and MDS-EB do not differ with respect to molecular characteristics and survival. Therefore, mutant TP53 AML/MDS-EB should be considered a distinct molecular disease entity

    Copy number variations in 375 patients with oesophageal atresia and/or tracheoesophageal fistula

    Get PDF
    Oesophageal atresia (OA) with or without tracheoesophageal fistula (TOF) are rare anatomical congenital malformations whose cause is unknown in over 90% of patients. A genetic background is suggested, and among the reported genetic defects are copy number variations (CNVs). We hypothesized that CNVs contribute to OA/TOF development. Quantifying their prevalence could aid in genetic diagnosis and clinical care strategies. Therefore, we profiled 375 patients in a combined Dutch, American and German cohort via genomic microarray and compared the CNV profiles with their unaffected parents and published control cohorts. We identified 167 rare CNVs containing genes (frequency<0.0005 in our in-house cohort). Eight rare CNVs - in six patients - were de novo, including one CNV previously associated with oesophageal disease. (hg19 chr7:g.(143820444-143839360)-(159119486-159138663)del) 1.55% of isolated OA/TOF patients and 1.62% of patients with additional congenital anomalies had de novo CNVs. Furthermore, three (15q13.3, 16p13.3 and 22q11.2) susceptibility loci were identified based on their overlap with known OA/TOF-associated CNV syndromes and overlap with loci in published CNV association case-control studies in developmental delay. Our study suggests that CNVs contribute to OA/TOF development. In addition to the identified likely deleterious de novo CNVs, we detected 167 rare CNVs. Although not directly disease-causing, these CNVs might be of interest, as they can act as a modifier in a multiple hit model, or as the second hit in a recessive condition
    corecore