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Abstract
Objective
To identify the clinical characteristics and genetic etiology of a family affected with hereditary
spastic paraplegia (HSP).

Methods
Clinical, genetic, and functional analyses involving genome-wide linkage coupled to whole-
exome sequencing in a consanguineous family with complicated HSP.

Results
A homozygous missense mutation was identified in the ACO2 gene (c.1240T>G p.Phe414Val)
that segregated with HSP complicated by intellectual disability and microcephaly. Lympho-
blastoid cell lines of homozygous carrier patients revealed significantly decreased activity of the
mitochondrial aconitase enzyme and defective mitochondrial respiration. ACO2 encodes
mitochondrial aconitase, an essential enzyme in the Krebs cycle. Recessive mutations in this
gene have been previously associated with cerebellar ataxia.

Conclusions
Our findings nominate ACO2 as a disease-causing gene for autosomal recessive complicated
HSP and provide further support for the central role of mitochondrial defects in the patho-
genesis of HSP.
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Hereditary spastic paraplegias (HSPs) are a clinically and
genetically heterogeneous group of disorders characterized by
neuronal degeneration of the corticospinal tracts, typically
resulting in progressive weakness in the lower extremities and
muscle spasms.1,2 Gait difficulties are the most common pre-
senting symptomwith a mean age at onset of 8 years.3 HSP can
present as uncomplicated forms, limited to pyramidal tract
(plus urinary) dysfunctions, or in complicated forms involving
additional neurologic or neuropsychiatric signs and symptoms.4

Complicated HSPs are more often associated with either an
autosomal recessive or X-linked pattern of inheritance.5

To date, more than 80 chromosomal loci have been linked to
HSP.5–7 Nevertheless, in a substantial percentage of patients
(38% in autosomal dominant HSP and 53% in autosomal
recessive HSP), no causative mutations are identified.6 Here,
we report the identification, through a genome-wide un-
biased approach, of a homozygous mutation in the ACO2
gene (c.1240T>G p.Phe414Val) associated with HSP com-
plicated by intellectual disability and microcephaly. ACO2
encodes the mitochondrial isoform of the aconitase enzyme,
an iron-sulfur protein that catalyses the stereospecific isom-
erization of citrate to isocitrate. Lymphoblastoid cell
lines (LCLs) derived from patients carrying the ACO2
p.Phe414Val mutation exhibited a marked decrease in aco-
nitase enzyme activity and impaired mitochondrial respira-
tion. Recessive mutations in this gene have been previously
associated only with cerebellar ataxia in a very small number
of patients. Therefore, our data markedly expand the asso-
ciated phenotype and nominate ACO2 as responsible for
autosomal recessive complicated HSP.

Methods
Family ascertainment
We ascertained a consanguineous Israeli family of Arab-
Bedouin descent from Galilee, Northern Israel (figure 1A)
with 2 siblings affected with complicated spastic paraplegia.
There were no affected relatives in the previous generations,
in keeping with an autosomal recessive pattern of disease
inheritance.

Standard protocol approvals, registrations,
and patient consents
This research was performed in accordance with the Decla-
ration of Helsinki and was approved by the Institutional
Review Board of the Sourasky University Medical Center,
Tel-Aviv University, and the Israeli Ministry of Health.
Written informed consent was obtained from the adult

participants, with assent from the minors and written in-
formed consent provided by their parents.

Genetic analyses
Genomic DNA was isolated from venous whole blood
using standard protocols. Genome-wide search for copy
number abnormalities was performed using Illumina
HumanOmniExpress-24 BeadChip 700k SNP arrays and
NEXUS discovery edition, version 7 (BioDiscovery, El
Segundo, CA). Single nucleotide polymorphism (SNP) array
data were used to perform a genome-wide linkage scan using
Merlin under the assumption of autosomal recessive disease

Figure 1 Family pedigree and MRI

(A) Family pedigree. Shaded symbols indicate family members with com-
plicated hereditary spastic paraplegia (HSP). Subjects of whom DNA was
available are numbered. Males are represented with squares and females
with circles. (B) Sagittal T1-weighted MRI (bottom left) and coronal T1-
weighted MRI (bottom right) demonstrating mild cerebellar atrophy
(arrows) in the proband (Ped ID IV-1).

Glossary
ADP = adenosine diphosphate; ATP = adenosine triphosphate; ExAC = Exome Aggregation Consortium; FCCP = carbonyl
cyanide p-trifluoromethoxyphenylhydrazone; HSP = hereditary spastic paraplegia; MAF = minor allele frequency; LCL =
lymphoblastoid cell line; LRT = likelihood ratio test; CADD = Combined Annotation Dependent Depletion; RCR =
respiratory control ratio; SNP = single nucleotide polymorphism; TCA = tricarboxylic acid cycle.
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inheritance and full penetrance (penetrance of known HSP
genes is estimated at 0.98).

Whole-exome sequencing in the 2 affected siblings was
performed at ;100× average coverage at the Center for Bio-
mics of the Erasmus MC. The exome protocols included in-
solution capturing (Agilent SureSelect V4 Human 50 Mb kit;
Agilent Technologies) and paired-end sequencing (IlluminaHi-
Seq 2000). Reads were aligned to the human reference genome
version 19 using Burrows-Wheeler Aligner. SNPs and small
insertions or deletions were called using the Genome Analysis
Toolkit. Variant filtering was performed using Cartagenia soft-
ware (Cartagenia Bench lab, Agilent Technologies).

Variants were filtered based on the following criteria: (1)
located within the genomic loci supported by linkage analysis
under an autosomal recessive model of disease inheritance
(Logarithm of the Odds score >0); (2) predicted to affect
protein coding (missense, nonsense, frameshift, and splice site);
(3) called in both affected individuals; (4) absent from
dbSNP129; (5) having a minor allele frequency (MAF) < 0.001
in public databases (Exome Variant Server 6500 [EVS6500],
1000 Genomes, and Exome Aggregation Consortium
[ExAC]). The resulting candidate variant was confirmed using
direct (Sanger) sequencing (PCR primers—forward: TGCTC
ACTGTCTCCTCCTGACC and reverse: GGACAATGCC
ACCCAGATCC) in all participating family members from
whom DNA was available.

Lymphoblastoid cell lines
B lymphoblasts were isolated from venous whole blood of 3
family members (Pedigree ID IV-1, IV-2, and IV-3, figure 1A)
and 2 unrelated healthy individuals and immortalized with
Epstein-Barr virus using a standardized procedure.9 The
resulting LCLs were maintained in Roswell Park Memorial
Institute 1640 medium containing 15% fetal calf serum, 1%
penicillin/streptomycin, 1% GlutaMAX, and 1% Minimum
Essential Medium sodium pyruvate (Thermo Fisher Scien-
tific). Functional analyses were performed to quantify aconi-
tase enzyme activity, ACO2 protein levels, and cellular
respirometry (e-appendix, links.lww.com/NXG/A35).

Results
Clinical studies
The proband (IV-1) is a 28-year-old man, diagnosed with
complicated spastic paraplegia, severe intellectual disability,
and microcephaly. He was born following a normal pregnancy
with delivery at 40 weeks of gestation. His birth weight was
2,445 g (1st percentile) and head circumference 32 cm (3rd
percentile). Throughout infancy, he had failure to thrive and
was underweight; however, no vomiting or deterioration re-
lated to febrile illness was reported. He had seizures beginning
at the age of 3 months, for which he initially received phe-
nobarbital and later valproic acid until the age of 5 years, after
which his seizures spontaneously remitted. He underwent
surgery for a right inguinal hernia. He had recurrent otitis

media as a toddler, and at the age of 4 years, he underwent
adenoidectomy and myringotomy. In childhood, he experi-
enced walking difficulties due to progressive spasticity of his
lower limbs and did not achieve independent walking. At the
age of 6 years, he underwent orthopedic surgeries for bilateral
iliopsoas, adductor, hamstring, and Achilles tendon release. At
no time in his development did he achieve spoken language
other than a few words, but he did acquire the ability to com-
municate with his family members using vocalized sounds. His
cognitive level was evaluated as severely disabled (estimated IQ
40–50). Currently, he is able to walk with assistance albeit with
a spastic gait (video 1, links.lww.com/NXG/A36). He is able to
eat unassisted, but needs help getting dressed. Hearing and
vision are not impaired, including normal fundoscopic exami-
nation and auditory event-related potentials. EEG at age 11 was
normal. Echocardiography was also normal. At the age of 19
years, MRI of the brain demonstrated mild atrophy of the cer-
ebellum (figure 1B), without marked supratentorial abnormal-
ities. Bilateral lower extremity EMG and nerve conduction
velocity studies were normal.

At the most recent neurologic examination (March 2016), his
head circumference measured 52 cm (3rd percentile). His
pupils were equal and reactive to light, but eye tracking was
abnormal. No facial weakness or tongue fasciculation was
observed. He did not have scoliosis and had good control of his
back. He had normal muscle strength in his upper limbs and
normal deep tendon reflexes. However, supination of the
upper limbs was limited, rightmore severely impaired than left.
He had lower limb weakness and spasticity and a foot drop
(proximal muscle strength 2/5 and distal strength 1/5). Deep
tendon reflexes in the lower limbs were brisk with clonus and
a bilateral extensor plantar response. He had limited hip
adduction with limited range of knee extension and ankle
dorsiflexion bilaterally. Pain, touch, and temperature sensation
were normal. Vibration test at the ankle was normal. No
cerebellar signs were evident, and his manual ability was
normal. He had no increased urinary frequency or urgency.

The proband’s 14-year-old sister (IV-3) also has complicated
spastic paraplegia, moderate intellectual disability, and
microcephaly. She was born after a normal pregnancy and
unremarkable delivery. She presented with developmental
delay evident from age 1 year. During childhood, she
experienced episodic attacks of ataxia, tremor, altered con-
sciousness, and behavioral changes related to febrile episodes.
She began walking at the age of 2 years and spoke her first
words at the age of 3 years. She did not progress to upright
ambulation until age 3 years when she started limping on 1 leg
and walking on her toes. From the age of 3 years, the pro-
band’s sister experienced recurrent episodes of encephalop-
athy, each followed by successive regression in psychomotor
functioning. In the differential diagnosis, the possibility of
a lysosomal storage disease was considered. As part of the
workup to evaluate this possibility, electron microscopy
studies of the liver and rectal biopsy tissue were performed.
No specific abnormalities were detected in these specimens.
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Mild glycogen accumulation was observed in the liver biopsy,
a finding that was considered benign and nonspecific. No
abnormalities, including glycogen accumulation, were ob-
served in the rectal biopsy tissue.

At the age of 8 years, she underwent orthopedic surgeries for
bilateral hamstrings and Achilles tendon lengthening. At the
age of 11 years, she was admitted to the hospital with acute
mental change and treated with methylphenidate. At present,
she walks with assistance and is able to eat unassisted. She has
no history of seizures. She has moderate intellectual disability
(estimated IQ 50–60), with basic reading, writing, and math-
ematics. CT of the head (2005), repeated brain MRI (2005,
2009, 2011), and magnetic resonance spectroscopy (2011)
demonstrated a nonspecific isolated subcortical white matter
signal abnormality in the left frontal lobe without additional
gross abnormal findings. Hearing and visual function were
normal, including fundoscopic examination and auditory event-
related potentials. Echocardiography was normal. CSF analysis
was also normal. Blood tests including blood gases, electrolytes,
lactate, ammonia, very-long-chain fatty acids, isotransferrin
electrophoresis, amino acids, biotinidase, and thyroid functions
were normal. Lysosomal enzyme testing excluded meta-
chromatic leukodystrophy, Krabbe disease, Tay-Sachs disease,
and GM1 gangliosidosis. Bilateral lower extremity EMG and
nerve conduction velocity studies were normal.

At the most recent neurologic examination (March 2016), she
presented with no dysmorphologies other than bilateral syn-
dactyly of the second and third phalanges of the feet. Both feet
were in an equinovarus position. Her head circumference mea-
sured 50 cm (3rd percentile). Her pupils were equal and reactive
to light, with horizontal end point nystagmus. There was no
facial weakness. She exhibited stuttering speech. Hyperreflexia
was evident in the upper limbs. Pronation and supination were
limited in the upper limbs. She had lower limb weakness and
spastic scissor gait and walked on her toes (video 2, links.lww.
com/NXG/A37). She also had lordosis without crouch gait.
Spasticity was present in both legs with limited adduction in both
hips and ankle dorsiflexion bilaterally. Deep tendon hyper-
reflexia, as well as contralateral reflexes, was present in the lower
limbs with sustained clonus and extensor plantar responses.
Vibration and joint position sense were reduced in the distal
lower extremities. Lower limb proximalmuscle strengthwas 3/5,
and distal strength was 2/5. No cerebellar signs were evident.
She had no increased urinary frequency or urgency.

The other 2 siblings of the proband, a 17-year-old brother and
15-year-old sister, were neurologically intact without any evi-
dence of HSP. Neither the parents nor any known extended
family members exhibited signs or symptoms of HSP.

Genetic studies
No homozygous or compound heterozygous copy number
variants were identified, which were shared in both affected
siblings. Parametric linkage analysis under an autosomal re-
cessive model revealed;23Mb of candidate genomic regions

distributed across chromosomes 2, 4, 5, 17, and 22 (table e-1,
links.lww.com/NXG/A33).

Whole-exome sequencing revealed only 2 homozygous or
compound heterozygous rare variants that were located within
the linkage regions shared in both affected siblings and pre-
dicted to affect protein coding. The first is a homozygous
variant in the gene ACO2 (c.1240T>G p.Phe414Val; figure 1A,
table 1, and figure 2A). This missense variant was absent from
all public databases (EVS6500, ExAC, and 1000Genomes) and
predicted to be deleterious by the SIFT, PolyPhen-2, likelihood
ratio test (LRT), Mutation Taster, and Combined Annotation
Dependent Depletion (CADD) (table 1) with strong evolu-
tionary conservation (figure 2B). ACO2 is highly expressed in
the human brain throughout neurodevelopment and adult-
hood (BrainSpan10). Variant genotyping of all available family
members was confirmed by Sanger sequencing (figures 1A
and 2A).

The other segregating variant was in the IL2RB gene
(c.1318C>T p. Pro440Ser), with an MAF of 8 × 10−5

Table 1 Identified exonic variants (GRCh37/hg19)

Chromosome 22 22

Position 37,524,474 41,918,935

Ref G T

Alt A G

DbSNP rs775132140 Na

Gene IL2RB ACO2

Coding effect Nonsynonymous Nonsynonymous

cDNA effect c.1318C>T c.1240T>G

Protein effect p.Pro440Ser p.Phe414Val

Public database frequency

EVS6500 Absent Absent

1000G Absent Absent

HRC Absent Absent

ExAC 0.083% Absent

Prediction tools

SIFT Tolerated Damaging

PolyPhen-2 Benign Damaging

LRT Neutral Damaging

MutationTaster Neutral Damaging

MutationAssessor Low Medium

CADD 10.29 33

Abbreviations: CADD = Combined Annotation Dependent Depletion; ExAC =
Exome Aggregation Consortium; HRC = Haplotype Reference Consortium;
LRT = likelihood ratio test.
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(ExAC). This variant is predicted as benign by the SIFT,
PolyPhen-2 LRT, MutationTaster, MutationAssessor, and
CADD (table 1). IL2RB exhibits very low expression across
all developmental ages in the human brain (BrainSpan10).

No additional cases of homozygous or compound hetero-
zygous ACO2 mutations were identified by exome se-
quencing among subjects with recessive ataxia (n = 319),
neurodegenerative disease (n = 2,000), or spastic paraplegia
(n = 144).

Functional studies
LCLs were established from the homozygous carrier patients
(Pedigree IDs IV-1 and IV-3, ACO2F414V/F414V), a heterozy-
gous sibling (Pedigree ID IV-2, ACO2F414V/c), and 2 unrelated
controls (ACO2c/c). Aconitase enzyme activity was signifi-
cantly reduced in LCLs derived from the homozygous carriers,
despite normal protein levels of ACO2 (figure 3, A and B).
Given that multiple proteins, including ACO2, contribute to
the aconitase enzymatic activitymeasured in whole-cell lysates,
we sought to perform subcellular fractionation to examine
mitochondrial aconitase activity, which is determined exclu-
sively by ACO2. Consistent with selective impairment of

ACO2 enzymatic activity, cellular fractionation revealed
a highly specific defect in mitochondrial aconitase activity,
whereas the cytoplasmic fraction that does not contain ACO2
revealed intact aconitase function (figure 3, C and D).

Analysis of cellular respiration in isolated mitochondria
revealed that LCLs derived from homozygous carriers
have a significant reduction in complex I–linked adenosine
diphosphate (ADP)-coupled (state 3) respiration and an at-
tenuated maximal respiration following uncoupling with car-
bonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)
(state 4u) (figure 4, A and B). Moreover, the respiratory
control ratio (RCR), defined as the ADP-activated flux
reflecting coupled oxidative phosphorylation capacity, was
attenuated in the mitochondria of LCLs derived from ho-
mozygous and heterozygous carriers (figure 4, C and D).

Discussion
We performed genome-wide linkage analysis and exome
sequencing in a consanguineous family with 2 siblings affec-
ted by HSP, complicated by intellectual disability and

Figure 2 Sanger sequencing, conservation, and summary of known ACO2 mutations

(A) Electropherograms indicating the homozygous ACO2 mutation (affected family members), the heterozygous mutation (both parents and unaffected
sibling), and the reference sequence (unaffected, unrelated subject). (B) Amino acid conservation within the ACO2 protein homologs across species. (C)
Homozygous (top) and compound heterozygous (bottom) ACO2 mutations identified to date in patients with neurodegenerative phenotypes.
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microcephaly. This led to the identification of 2 candidate
homozygous missense variants. On the basis of the
variant frequency in public databases, prior association with
neurodegenerative disease, in silico pathogenicity prediction,
and expression in human brain, we considered theACO2 variant
(c.1240T>G, p.Phe414Val) as the likely causal mutation. The
ACO2 p.Phe414Valmutationwas absent from 319 patients with
recessive ataxia, 2,000 patients with neurodegenerative disease,
and 144 patients with spastic paraplegia, indicating the rareness
of this form of cHSP. ACO2 encodes the protein aconitase 2,
a critical enzyme in the tricarboxylic acid cycle (TCA) cycle.
Through its enzymatic function, aconitase 2 catalyses the
isomerization of citrate to isocitrate. The TCA cycle is the pri-
mary source of cellular metabolic energy and therefore strongly
conserved evolutionarily. TCA cycle enzymopathies have pre-
viously been reported as the cause of a variety of cerebral
encephalopathies, also often with muscular hypotonia and de-
velopmental delay as prominent presenting features.11

The corticospinal tract contains the longest neurons of the
human body, posing strong metabolic demands including the
requirement for long-distance transport of proteins and
organelles to distal axon terminals. Genes responsible for the

functional integrity of this complex machinery, including
mitochondrial proteins, have been implicated in diverse forms
of HSP.1 The finding that a homozygous mutation in ACO2 is
associated with HSP provides further support for the central
role of mitochondrial defects in the pathogenesis of spastic
paraplegia. Notably, several genetic mutations associated with
HSP have been functionally demonstrated to impair mito-
chondrial function: SPG7 (PGN), SPG13 (HSPD1), SPG28
(DDHD1), SPG31 (REEP1), SPG55 (C12ORF65), mito-
chondrial adenosine triphosphate (ATP) synthase 6
(mt-ATP6), IBA57, and OPA3. SPG7 encodes an m-AAA
metalloprotease localized to the inner mitochondrial mem-
brane where it functions to guard the integrity of proteins
within the respiratory pathway. A mutation in SPG7 was
found to cosegregate in a multiplex family with HSP.12

Patients with SPG7 have reduced mitochondrial respiration
rates and are more sensitive to oxidative stress.13 Patients with
mutations in HSPD1 have a pure HSP phenotype14 and im-
paired mitochondrial integrity.15 Patients with SPG28 can be
affectedwith pure or complicatedHSP.Mutations inREEP1 can
cause reduced mitochondrial respiration and ATP
production.16,17 Patients with SPG31 can have a pure or com-
plicated form of HSP and have a dysfunction in mitochondrial
energy production.18–20 A homozygous nonsense mutation in
C12ORF65 (SPG55) has been described in a family from Japan
with 2 patients affected by HSP complicated by optic atrophy
and polyneuropathy. This mutation caused a reduction in mi-
tochondrial protein synthesis and respiratory function.21 Fa-
milial maternally inherited late-onset HSP was described in
association with a homoplasmic mutation in mt-ATP6 whereby
the clinical severity of symptoms was strongly correlated with
biochemical functioning of mt-ATP6.22 Recessive mutations in
IBA57 associated with HSP complicated by optic atrophy and
peripheral neuropathy have been found to cause a reduction in
mitochondrial 4FE-4S protein expression.23 Moreover, induced
pluripotent stem cell–derived neurons from patients with HSP
resulting from SPG3Amutations were reported to have reduced
mitochondrial motility.24 Lastly, exome sequencing revealed
a segregating homozygous missense mutation in OPA3 segre-
gating with optic atrophy, chorea, cerebellar ataxia, dystonia, and
lower limb pyramidal symptoms.25 Heterozygous mutations in
this gene are known to affect mitochondrial functioning.26

Although we cannot exclude that the c.1318C>T p.Pro440Ser
variant in IL2RB plays a role in the phenotype, the very low
gene expression in the human brain, functional prediction as
benign, and weak evolutionary conservation argue strongly
against the pathogenicity of this variant. Gene-level burden
analysis previously demonstrated an association of rare coding
variation in IL2RBwith rheumatoid arthritis.27 However, to our
knowledge, no known associations between IL2RB and diseases
of the central or peripheral nervous system have been reported.
Furthermore, functional evidence from LCLs demonstrates
that theACO2 p.Phe414Val mutation is responsible for a severe
defect in mitochondrial aconitase activity and respiratory
function. Notably, basal, maximum, and complex I–linked
ADP-coupled (state 3) respiration were all affected only in

Figure 3Mutation carrier–derived lymphoblastoid cell lines
(LCLs) show decreased aconitase 2 activity and
mitochondrial respiration deficiency compared
with control LCLs

(A) Aconitase enzyme activity in LCL lysates of healthy controls (ACOc/c) and
homozygous patient carriers (ACO2F414V/F414V) (p = 1.6 × 10−8). (B) Western
blot of corresponding LCL lysates showing equal ACO2 protein levels in
healthy controls and homozygous carrier patients. (C) Mitochondrial frac-
tion of LCL lysates show a significant decrease in aconitase enzyme activity
in homozygous patient carrier samples (p = 7.4 × 10−7). (D) ACO2 enzyme
activity is unchanged in the cytoplasmic fraction of corresponding LCL
lysates (p = 0.11). Data in (A, C and D) are expressed as mean ± SEM,
representative experiment of 3 independent experiments, n = 6 time
curvemeasurements per condition; results of the paired t test are indicated.
*p < 0.0001.
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homozygous carriers. By contrast, the RCR was also decreased
in heterozygous carrier LCLs, indicating a subtle intermediate
phenotype conferred by heterozygous carriership.

Homozygous and compound heterozygousmutations inACO2
have been previously associated with varying combinations of
cerebellar ataxia, retinopathy, and developmental delay (figure
2C and table e-2, links.lww.com/NXG/A34). A p.Ser112Arg
missensemutation was first identified in 2 families with infantile
cerebellar-retinal degeneration.28 Affected individuals exhibited
developmental delay including severe psychomotor retardation,
with an age at onset between 2 and 6 months. Brain MRI
revealed cerebellar degeneration and white matter abnormali-
ties (dysmyelination). Optic atrophy and retinal degeneration
were readily identifiable in the setting of progressively severe
visual impairment. Mitochondrial aconitase enzymatic activity
was significantly reduced in lymphoblasts.

Through exome sequencing of sporadic cases of complicated
optic neuropathy, 4 patients with homozygous or compound
heterozygous mutations in ACO2 were identified. Two
patients from 1 family had a compound heterozygous muta-
tion (p.Leu74Val and p.Gly661Arg) and presented with de-
creased visual acuity in childhood and progression of
ophthalmologic symptoms into the fourth decade of life.
Brain MRI was not performed. A third patient (homozygous
p.Gly259Asp mutation) was born with a low APGAR score,
intermittent episodes of central apnea, and moderate cere-
bellar atrophy. The fourth patient (compound heterozygous
mutation, p.Leu736Asn and p.Leu776Asnfs*49) exhibited
ophthalmologic impairments with developmental delay and
moderate cerebellar atrophy. Mitochondrial aconitase enzy-
matic activity was significantly reduced in patient fibroblasts.29

Furthermore, a 3-year-old sporadic patient with developmen-
tal delay, cerebellar dysfunction, and mild auditory neuropa-
thy in the absence of retinal degeneration was reported
with compound heterozygousmutations inACO2 (c.1819C>T
p.Arg607Cys and c.2135C>T p.Pro712Leu). Mitochondrial
aconitase activity was also significantly reduced in patient
fibroblasts.30

Lastly, an 18-year-old sporadic patient was described with
childhood-onset ataxia, profound intellectual disability, in-
tractable epilepsy starting at the age of 2 years, cerebellar
atrophy peripheral neuropathy, and childhood-onset optic
atrophy and pigmentary retinopathy. Metabolic and com-
parative genomic hybridization array screening did not
identify causative genetic mutations. Using exome se-
quencing, a compound heterozygous mutation in ACO2
(c.2328-2331delGGAA p.Lys776Asnfs*49 and c.1091T>C
p.Val364Ala) was identified.31

In contrast to previous reports of cases with ACO2mutations,
the patients in the family described in the current article de-
veloped severe HSP without cerebellar signs or retinal ab-
normalities, despite a similar decrease in mitochondrial
aconitase activity and respiration. Previous reports of ACO2
mutations highlight an important degree of phenotypic het-
erogeneity (table e-2, links.lww.com/NXG/A34), with dis-
tinct genotypes being associated with optic neuropathy and/
or cerebellar ataxia. The presently reported mutation
(c.1240T>G p.Phe414Val) was associated with distinct phe-
notypic characteristics (HSP, microcephaly) in the absence of
optic neuropathy or cerebellar ataxia. Notably, the proband
exhibited mild atrophy of the cerebellar vermis and hemi-
spheres, confirming previous reports of discordance between

Figure 4 Mitochondrial respiration is affected in lymphoblastoid cell lines (LCLs) of ACO2 mutation carriers

Mitochondrial respiration was measured in isolated
mitochondria from homozygous patient carriers
(ACO2F414V/F414V), heterozygous ACO2 mutation car-
rier (ACO2F414V/c), and healthy control cell lines
(ACO2c/c) by high-resolution respirometry. (A) State 3
(complex I–linked ADP-coupled respiration) with
pyruvate and malate as substrates and (B) State 4u
(maximum uncoupled respiration induced by FCCP
after ATP synthase inhibition by oligomycin) are
depicted. Respiratory efficiency is shown as (C) the
respiratory control ratio of ADP-activated flux mea-
suring coupled OXPHOS capacity (state 3/state 4) and
(D) the efficiency of FCCP (maximum uncoupled res-
piration efficiency) (state 4u/state 4). Data are
expressed as mean ± SD, n = 3–6 independent
experiments per condition, with in total 6–11 meas-
urements per condition; Tukey post hoc results
for the one-way analysis of variance are indicated.
*p < 0.05, **p < 0.01.
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cerebellar atrophy and cerebellar ataxia among carriers of
recessive ACO2 mutations. Moreover, the absence of optic
neuropathy and cerebellar ataxia in recessive carriers of the
p.Phe414Val mutation may result from its unique localization
to the second alpha helix domain, which is distinct from any of
the other previously reported ACO2 mutations (figure 2C).

Our findings nominate ACO2 as a disease-causing gene for
autosomal recessive complicated HSP. Genetic screening of
ACO2 should be considered for patients with complicated
HSP in an effort to obtain a molecular diagnosis. Moreover,
these results provide additional support for the central role of
mitochondrial defects in the pathogenesis of HSP.
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