32 research outputs found

    Tau Decays and Chiral Perturbation Theory

    Get PDF
    In a small window of phase space, chiral perturbation theory can be used to make standard model predictions for tau decays into two and three pions. For τ2πντ\tau \to 2\pi \nu_\tau, we give the analytical result for the relevant form factor FVF_V up to two loops, then calculate the differential spectrum and compare with available data. For τ3πντ\tau \to 3 \pi \nu_\tau, we have calculated the hadronic matrix element to one loop. We discuss the decomposition of the three pion states into partition states and we give detailed predictions for the decay in terms of structure functions. We also compare with low energy predictions of meson dominance models. Overall, we find good agreement, but also some interesting discrepancies, which might have consequences beyond the limit of validity of chiral perturbation theory.Comment: 39 pages, Latex, including 8 Postscript figures. The complete paper is also available via anonymous ftp at ftp://www-ttp.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprint

    The Ain Temouchent earthquake of December 22th, 1999

    No full text
    On December 22nd, 1999 an earthquake of Magnitude Mw : 5.7 occurred at Ain Temouchent (northwest Algeria). This moderate seismic event was located in a region characterized by a low seismic activity where few historical events have been observed. The earthquake, with a maximum intensity of VII (MSK scale), caused serious damages to the Ain Temouchent city and its surroundings. In the epicentral area, 25 people died and about 25,000 people were made homeless. Some minor breaks have been observed in several areas in the field. They were mainly related to minor collapses in the landscape or in volcanic cavities. The focal mechanism has been studied by using broadband data at regional and teleseismic distances, and different methods. The fault-plane solution has been estimated from first motions of P wave. Depth and source time function have been estimated from the modeling of body waveforms. Scalar seismic moment and source dimension have been obtained from spectral analysis. Results show thrust motion, with a horizontal pressure axis oriented in a NW-SE direction, a depth of 4 km and a simple source time function with time duration of 5 s. Scalar seismic moment estimated from waveform modeling is 4.7 · 1017 Nm, and spectral analysis gives a value of 1.7 · 1017 Nm and a source radius of 7.5 km

    The Beni-Ilmane (Algeria) seismic sequence of May 2010: Seismic sources and stress tensor calculations,

    No full text
    International audienceA moderate earthquake with a moment magnitude of Mw 5.5 struck the Sub-Bibanique region of eastern Algeria on 14 May 2010, killing three people, injuring hundreds of others, and causing moderate damages in the epicentral area, mainly in the villages of Beni-Ilmane and Samma. The focal mechanism of the seismic source for the first shock, obtained by near-field waveform modelling, exhibits left-lateral strike-slip faulting with the first nodal plane oriented at N345°, and right-lateral strike-slip faulting with the second nodal plane oriented at N254°. A second earthquake that struck the region on 16 May 2010, with a moment magnitude of Mw 5.1, was located 9 km SW of the first earthquake. The focal mechanism obtained by waveform modelling showed reverse faulting with nodal planes oriented NE–SW (N25° and N250°). A third earthquake that struck the region on 23 May 2010, with a moment magnitude of Mw 5.2, was located 7 km S of the first shock. The obtained focal mechanism showed a left-lateral strike-slip plane oriented at N12° and a right-lateral strike-slip plane oriented at N257°. Field investigations combined with geological and seismotectonic analyses indicate that the three earthquake shocks were generated by activity on three distinct faults. The second and third shocks were generated on faults oriented WSW–ENE and NNE–SSW, respectively. The regional stress tensor calculated in the region gives an orientation of N340° for the maximum compressive stress direction (σ1) which is close to the horizontal, with a stress shape factor indicating either a compressional or a strike-slip regime

    The Tadjena Earthquake (Mw = 5.0) of December 16, 2006 in the Cheliff Region (Northern Algeria): Waveform Modelling, Regional Stresses, and Relation with the Boukadir Fault

    No full text
    International audienceThe Cheliff region has experienced some significant earthquakes in the last century (1937, 1954, and 1980). The most destructive one is that of El Asnam on October 10, 1980, Ms = 7.3 (Io = IX), which destroyed the Chlef city (formerly El Asnam) and its surrounding villages. On December 16, 2006 a moderate earthquake (Mw = 5.0) hit the Cheliff region. The maximum observed intensity (Io = V: MSK-scale) was observed at Abou El Hassen, Benaria, Bouzghaïa and Tadjena. No damages or human losses were recorded. Nevertheless, minor cracks on walls of the old school at Tadjena were observed. The point source focal mechanism of the event was determined by inverting the waveforms of three regional broadband stations of the ADSN (Algerian Digital Seismic Network). It corresponds to thrust-reverse faulting with a strike-slip component. The stress tensor obtained by the inversion of the 15 focal mechanisms available in the Cheliff region exhibits a well constrained compression axis σ1 horizontal and trending N145°. The NW dipping nodal plane indicating a NE-SW thrust fault with a right-lateral component (strike, dip, rake = 249, 38, 137) is more compatible with the regional stress tensor than the steep dipping NNE-SSW nodal plane showing reverse faulting with a left-lateral component (strike, dip, rake = 15, 65, 60). Accordingly, the Tadjena moderate size earthquake can be related to the Boukadir active fault bordering the lower Cheliff basin to the north, a situation similar to that of the El Asnam fault bordering the middle Cheliff basin to the north

    The new Algerian Digital Seismic Network (ADSN): towards an earthquake early-warning system

    No full text
    Seismic monitoring in Algeria has seen great changes since the Boumerdes earthquake of 21 May 2003. Indeed, the installation of a new digital seismic network has resulted in a significant upgrade of the previous analog telemetry network. <br><br> During the last four years, the number of stations in operation has increased substantially from 25 to 69, and 20 of these are broadband, 2 are very broadband, 47 are short period. 21 are equipped with accelerometers. They are all managed by Antelope software from Kinemetrics (US Cie), and they are all connected in real time and use various modes of transmission (e.g., satellite, internet, mobile phone). The spatial repartition of the stations now cover most of northern Algeria. In addition, 70 GPS stations have recently been added to this seismological network, most of them collocated with the seismological stations. <br><br> Since the installation of the network, the records of local or distant events have improved significantly. The automatic processing of the data in a few minutes allows alert messages to be distributed to Civil Defense and other national authorities to react promptly to any emergency. The current strategy is to improve the data quality, to increase the density of the network by adding about 50 new stations, to reduce the processing time, and to reduce the time needed to send out an alert message. The result should be greatly improved network performance, which will lead to an effective early-warning system

    Discrete Open-Shell Tris(bipyridinium radical cationic) Inclusion Complexes in the Solid State

    No full text
    The solid-state properties of organic radicals depend on radical-radical interactions that are influenced by the superstructure of the crystalline phase. Here, we report the synthesis and characterization of a substituted tetracationic cyclophane, cyclobis(paraquat-p-1,4-dimethoxyphenylene), which associates in its bisradical dicationic redox state with the methyl viologen radical cation (MV•+) to give a 1:1 inclusion complex. The (super)structures of the reduced cyclophane and this 1:1 complex in the solid state deviate from the analogous (super)structures observed for the reduced state of cyclobis(paraquat-p-phenylene) and that of its trisradical tricationic complex. Titration experiments reveal that the methoxy substituents on the p-phenylene linkers do not influence binding of the cyclophane toward small neutral guests - such as dimethoxybenzene and tetrathiafulvalene - whereas binding of larger radical cationic guests such as MV•+ by the reduced cyclophane decreases 10-fold. X-ray diffraction analysis reveals that the solid-state superstructure of the 1:1 complex constitutes a discrete entity with weak intermolecular orbital overlap between neighboring complexes. Transient nutation EPR experiments and DFT calculations confirm that the complex has a doublet spin configuration in the ground state as a result of the strong orbital overlap, while the quartet-state spin configuration is higher in energy and inaccessible at ambient temperature. Superconducting quantum interference device (SQUID) measurements reveal that the trisradical tricationic complexes interact antiferromagnetically and form a one-dimensional Heisenberg antiferromagnetic chain along the a-axis of the crystal. These results offer insights into the design and synthesis of organic magnetic materials based on host-guest complexes
    corecore