1,185 research outputs found
Exploring the dark accelerator HESS J1745-303 with Fermi Large Area Telescope
We present a detailed analysis of the gamma-ray emission from HESS J1745-303
with the data obtained by the Fermi Gamma-ray Space Telescope in the first ~29
months observation.The source can be clearly detected at the level of ~18-sigma
and ~6-sigma in 1-20 GeV and 10-20 GeV respectively. Different from the results
obtained by the Compton Gamma-ray Observatory, we do not find any evidence of
variability. Most of emission in 10-20 GeV is found to coincide with the region
C of HESS J1745-303. A simple power-law is sufficient to describe the GeV
spectrum with a photon index of ~2.6. The power-law spectrum inferred in the
GeV regime can be connected to that of a particular spatial component of HESS
J1745-303 in 1-10 TeV without any spectral break. These properties impose
independent constraints for understanding the nature of this "dark particle
accelerator".Comment: 8 pages, 3 figures, 1 table, accepted for publication in Ap
Diffuse Hard X-ray Sources Discovered with the ASCA Galactic Plane Survey
We found diffuse hard X-ray sources, G11.0+0.0, G25.5+0.0, and G26.6-0.1 in
the ASCA Galactic plane survey data. The X-ray spectra are featureless with no
emission line, and are fitted with both models of a thin thermal plasma in
non-equilibrium ionization and a power-law function. The source distances are
estimated to be 1-8 kpc, using the best-fit NH values on the assumption that
the mean density in the line of sight is 1 H cm^-3. The source sizes and
luminosities are then 4.5-27 pc and (0.8-23)x10^33 ergs/s. Although the source
sizes are typical to supernova remnants (SNR) with young to intermediate ages,
the X-ray luminosity, plasma temperature, and weak emission lines in the
spectra are all unusual. This suggests that these objects are either shell-like
SNRs dominated by X-ray synchrotron emission, like SN 1006, or, alternatively,
plerionic SNRs. The total number of these classes of SNRs in our Galaxy is also
estimated.Comment: 17 pages, 9 figures; to appear in Ap
A Note on Tsallis Holographic Dark Energy
We explore the effects of considering various infrared (IR) cutoffs,
including the particle horizon, Ricci horizon and Granda-Oliveros (GO) cutoffs,
on the properties of Tsallis holographic dark energy (THDE) model, proposed
inspired by Tsallis generalized entropy formalism \cite{THDE}. Interestingly
enough, we find that for the particle horizon as IR cutoff, the obtained THDE
model can describe the accelerated universe. This is in contrast to the usual
HDE model which cannot lead to an accelerated universe, if one consider the
particle horizon as IR cutoff. We also investigate the cosmological
consequences of THDE under the assumption of a mutual interaction between the
dark sectors of the Universe. It is shown that the evolution history of the
Universe can be described by these IR cutoffs and thus the current cosmic
acceleration can also been realized. The sound instability of THDE models for
each cutoff are also explored, separately.Comment: 12 pages, 31 figure
Chandra Observations of A Galactic Supernova Remnant Vela Jr.: A New Sample of Thin Filaments Emitting Synchrotron X-Rays
A galactic supernova remnant (SNR) Vela Jr. (RX J0852.04622, G266.61.2)
shows sharp filamentary structure on the north-western edge of the remnant in
the hard X-ray band. The filaments are so smooth and located on the most outer
side of the remnant. We measured the averaged scale width of the filaments
( and ) with excellent spatial resolution of {\it Chandra}, which are
in the order of the size of the point spread function of {\it Chandra} on the
upstream side and 49.5 (36.0--88.8) arcsec on the downstream side,
respectively. The spectra of the filaments are very hard and have no line-like
structure, and were well reproduced with an absorbed power-law model with
2.67 (2.55--2.77), or a {\tt SRCUT} model with = 4.3
(3.4--5.3) Hz under the assumption of . These results
imply that the hard X-rays are synchrotron radiation emitted by accelerated
electrons, as mentioned previously. Using a correlation between a function
and the SNR age, we estimated the
distance and the age of Vela Jr.: the estimated distance and age are 0.33
(0.26--0.50) kpc and 660 (420--1400) years, respectively. These results are
consistent with previous reports, implying that --age relation may be
a useful tool to estimate the distance and the age of synchrotron X-ray
emitting SNRs.Comment: 19 pages, 8 figures, ApJ, in pres
Dissipation and detection of polaritons in ultrastrong coupling regime
We have investigated theoretically a dissipative polariton system in the
ultrastrong light-matter coupling regime without using the rotating-wave
approximation on system-reservoir coupling. Photons in a cavity and excitations
in matter respectively couple two large ensembles of harmonic oscillators
(photonic and excitonic reservoirs). Inheriting the quantum statistics of
polaritons in the ultrastrong coupling regime, in the ground state of the whole
system, the two reservoirs are not in the vacuum states but they are squeezed
and correlated. We suppose this non-vacuum reservoir state in the master
equation and in the input-output formalism with Langevin equations. Both two
approaches consistently guarantee the decay of polariton system to its ground
state, and no photon detection is also obtained when the polariton system is in
the ground state.Comment: 18 pages, 3 figure
Fine Structures of Shock of SN 1006 with the Chandra Observation
The north east shell of SN 1006 is the most probable acceleration site of
high energy electrons (up to ~ 100 TeV) with the Fermi acceleration mechanism
at the shock front. We resolved non-thermal filaments from thermal emission in
the shell with the excellent spatial resolution of Chandra. The thermal
component is extended widely over about ~ 100 arcsec (about 1 pc at 1.8 kpc
distance) in width, consistent with the shock width derived from the Sedov
solution. The spectrum is fitted with a thin thermal plasma of kT = 0.24 keV in
non-equilibrium ionization (NEI), typical for a young SNR. The non-thermal
filaments are likely thin sheets with the scale widths of ~ 4 arcsec (0.04 pc)
and ~ 20 arcsec (0.2 pc) at upstream and downstream, respectively. The spectra
of the filaments are fitted with a power-law function of index 2.1--2.3, with
no significant variation from position to position. In a standard diffusive
shock acceleration (DSA) model, the extremely small scale length in upstream
requires the magnetic field nearly perpendicular to the shock normal. The
injection efficiency (eta) from thermal to non-thermal electrons around the
shock front is estimated to be ~ 1e-3 under the assumption that the magnetic
field in upstream is 10 micro G. In the filaments, the energy densities of the
magnetic field and non-thermal electrons are similar to each other, and both
are slightly smaller than that of thermal electrons. in the same order for each
other. These results suggest that the acceleration occur in more compact region
with larger efficiency than previous studies.Comment: 24 pages, 11 figures, Accepted for publication in ApJ, the paper with
full resolution images in
http://www-cr.scphys.kyoto-u.ac.jp/member/bamba/Paper/SN1006.pd
G\"odel-type universes in f(T) gravity
The issue of causality in gravity is investigated by examining the
possibility of existence of the closed timelike curves in the G\"{o}del-type
metric. By assuming a perfect fluid as the matter source, we find that the
fluid must have an equation of state parameter greater than minus one in order
to allow the G\"{o}del solutions to exist, and furthermore the critical radius
, beyond which the causality is broken down, is finite and it depends on
both matter and gravity. Remarkably, for certain models, the perfect
fluid that allows the G\"{o}del-type solutions can even be normal matter, such
as pressureless matter or radiation. However, if the matter source is a special
scalar field rather than a perfect fluid, then and the
causality violation is thus avoided.Comment: 18 pages, introduction revised, reference adde
Electric-magnetic duality and the conditions of inflationary magnetogenesis
The magnetogenesis scenarios triggered by the early variation of the gauge
coupling are critically analyzed. In the absence of sources, it is shown that
the electric and magnetic power spectra can be explicitly computed by means of
electric-magnetic duality transformations. The remnants of a pre-inflationary
expansion and the reheating process break explicitly electric-magnetic duality
by inducing Ohmic currents. The generation of large-scale magnetic field and
the physical distinction between electric and magnetic observables stems, in
this class of models, from the final value reached by the conductivity of the
plasma right after inflation. Specific numerical examples are given. The
physical requirements of viable magnetogenesis scenarios are spelled out.Comment: 25 pages, 9 figure
- …
