7 research outputs found

    Distribution of monocarboxylate transporters in the peripheral nervous system suggests putative roles in lactate shuttling and myelination.

    Get PDF
    Lactate, a product of glycolysis, has been shown to play a key role in the metabolic support of neurons/axons in the CNS by both astrocytes and oligodendrocytes through monocarboxylate transporters (MCTs). Despite such importance in the CNS, little is known about MCT expression and lactate function in the PNS. Here we show that mouse MCT1, MCT2, and MCT4 are expressed in the PNS. While DRG neurons express MCT1, myelinating Schwann cells (SCs) coexpress MCT1 and MCT4 in a domain-specific fashion, mainly in regions of noncompact myelin. Interestingly, SC-specific downregulation of MCT1 expression in rat neuron/SC cocultures led to increased myelination, while its downregulation in neurons resulted in a decreased amount of neurofilament. Finally, pure rat SCs grown in the presence of lactate exhibited an increase in the level of expression of the main myelin regulator gene Krox20/Egr2 and the myelin gene P0. These data indicate that lactate homeostasis participates in the regulation of the SC myelination program and reveal that similar to CNS, PNS axon-glial metabolic interactions are most likely mediated by MCTs

    The first report of RPSA polymorphisms, also called 37/67 kDa LRP/LR gene, in sporadic Creutzfeldt-Jakob disease (CJD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although polymorphisms of <it>PRNP</it>, the gene encoding prion protein, are known as a determinant affecting prion disease susceptibility, other genes also influence prion incubation time. This finding offers the opportunity to identify other genetic or environmental factor (s) modulating susceptibility to prion disease. Ribosomal protein SA (<it>RPSA</it>), also called 37 kDa laminin receptor precursor (LRP)/67 kDa laminin receptor (LR), acts as a receptor for laminin, viruses and prion proteins. The binding/internalization of prion protein is dependent for LRP/LR.</p> <p>Methods</p> <p>To identify other susceptibility genes involved in prion disease, we performed genetic analysis of <it>RPSA</it>. For this case-control study, we included 180 sporadic Creutzfeldt-Jakob disease (CJD) patients and 189 healthy Koreans. We investigated genotype and allele frequencies of polymorphism on <it>RPSA </it>by direct sequencing or restriction fragment length polymorphism (RFLP) analysis.</p> <p>Results</p> <p>We observed four single nucleotide polymorphisms (SNPs), including -8T>C (rs1803893) in the 5'-untranslated region (UTR) of exon 2, 134-32C>T (rs3772138) in the intron, 519G>A (rs2269350) in the intron and 793+58C>T (rs2723) in the intron on the <it>RPSA</it>. The 519G>A (at codon 173) is located in the direct PrP binding site. The genotypes and allele frequencies of the <it>RPSA </it>polymorphisms showed no significant differences between the controls and sporadic CJD patients.</p> <p>Conclusion</p> <p>These results suggest that these <it>RPSA </it>polymorphisms have no direct influence on the susceptibility to sporadic CJD. This was the first genetic association study of the polymorphisms of <it>RPSA </it>gene with sporadic CJD.</p
    corecore