647 research outputs found

    Coexistence of charge density wave and spin-Peierls orders in quarter-filled quasi-one dimensional correlated electron systems

    Full text link
    Charge and spin-Peierls instabilities in quarter-filled (n=1/2) compounds consisting of coupled ladders and/or zig-zag chains are investigated. Hubbard and t-J models including local Holstein and/or Peierls couplings to the lattice are studied by numerical techniques. Next nearest neighbor hopping and magnetic exchange, and short-range Coulomb interactions are also considered. We show that, generically, these systems undergo instabilities towards the formation of Charge Density Waves, Bond Order Waves and (generalized) spin-Peierls modulated structures. Moderate electron-electron and electron-lattice couplings can lead to a coexistence of these three types of orders. In the ladder, a zig-zag pattern is stabilized by the Holstein coupling and the nearest-neighbor Coulomb repulsion. In the case of an isolated chain, bond-centered and site-centered 2k_F and 4k_F modulations are induced by the local Holstein coupling. In addition, we show that, in contrast to the ladders, a small charge ordering in the chains, strongly enhances the spin-Peierls instability. Our results are applied to the NaV_2O_5 compound (trellis lattice) and various phases with coexisting charge disproportionation and spin-Peierls order are proposed and discussed in the context of recent experiments. The role of the long-range Coulomb potential is also outlined.Comment: 10 pages, Revtex, 10 encapsulated figure

    Charge Ordering and Spin gap in NaV_2O_5

    Full text link
    A possible ground state of NaV_2O_5 is proposed based on the Hartree approximation for both on-site and intersite Coulomb interactions. The results indicate that the intersite Coulomb interaction induces a zigzag type of charge disproportionation (i.e. charge ordering) along the ladders of V-ions resulting in the localized spins between neighboring ladders to form a spin gap. This new state, which is different from the spin-Peierls state so far believed, seems to be consistent with the existing experimental results.Comment: 3 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Study of impurities in spin-Peierls systems including lattice relaxation

    Full text link
    The effects of magnetic and non-magnetic impurities in spin-Peierls systems are investigated allowing for lattice relaxation and quantum fluctuations. We show that, in isolated chains, strong bonds form next to impurities, leading to the appearance of magneto-elastic solitons. Generically, these solitonic excitations do not bind to impurities. However, interchain elastic coupling produces an attractive potential at the impurity site which can lead to the formation of bound states. In addition, we predict that small enough chain segments do not carry magnetic moments at the ends

    Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays

    Get PDF
    Abstract This article describes a miniaturised electrical imaging (resistivity tomography) technique to map the cracking pattern of a clay model. The clay used was taken from a scaled flood embankment built to study the fine fissuring due to desiccation and breaching process in flooding conditions. The potential of using a miniature array of electrodes to follow the evolution of the vertical cracks and number them during the drying process was explored. The imaging technique generated two-dimensional contoured plots of the resistivity distribution within the model before and at different stages of the desiccation process. The change in resistivity associated with the widening of the cracks were monitored as a function of time. Experiments were also carried out using a selected conductive gel to slow down the transport process into the cracks to improve the scanning capabilities of the equipment. The main vertical clay fissuring network was obtained after inversion of the experimental resistivity measurements and validated by direct observations

    Thermodynamical Properties of a Spin 1/2 Heisenberg Chain Coupled to Phonons

    Full text link
    We performed a finite-temperature quantum Monte Carlo simulation of the one-dimensional spin-1/2 Heisenberg model with nearest-neighbor interaction coupled to Einstein phonons. Our method allows to treat easily up to 100 phonons per site and the results presented are practically free from truncation errors. We studied in detail the magnetic susceptibility, the specific heat, the phonon occupation, the dimerization, and the spin-correlation function for various spin-phonon couplings and phonon frequencies. In particular we give evidence for the transition from a gapless to a massive phase by studying the finite-size behavior of the susceptibility. We also show that the dimerization is proportional to g2/Ωg^2/\Omega for T<2JT<2J.Comment: 10 pages, 17 Postscript Figure

    Antiferromagnetism in doped anisotropic two-dimensional spin-Peierls systems

    Full text link
    We study the formation of antiferromagnetic correlations induced by impurity doping in anisotropic two-dimensional spin-Peierls systems. Using a mean-field approximation to deal with the inter-chain magnetic coupling, the intra-chain correlations are treated exactly by numerical techniques. The magnetic coupling between impurities is computed for both adiabatic and dynamical lattices and is shown to have an alternating sign as a function of the impurity-impurity distance, hence suppressing magnetic frustration. An effective model based on our numerical results supports the coexistence of antiferromagnetism and dimerization in this system.Comment: 5 pages, 4 figures; final version to appear in Phys. Rev.

    Simulations of pure and doped low-dimensional spin-1/2 gapped systems

    Full text link
    Low dimensional spin-1/2 systems with antiferromagnetic interactions display very innovative features, driven by strong quantum fluctuations. In particular, geometrical effects or competing magnetic interactions can give rise to the formation of a spin gap between the singlet ground state and the first excited triplet state. In this chapter, we focus on the numerical investigation of such systems by Exact Diagonalisation methods and some extensions of it including a simultaneous mean-field treatment of some perturbative couplings. After a presentation of the Lanczos algorithm and a description of the space group symmetries, we give a short review on some pure low-dimensionnal frustrated spin gapped systems. In particular, we outline the role of the magnetic frustration in the formation of disordered phase. A large part is also devoted to frustrated Spin-Peierls systems for which the role of interchain couplings as well as impurity doping effects has been studied numerically.Comment: Chapter book in Quantum Magnetism, Lecture Notes in Physics (2004

    Odd C-P contributions to diffractive processes

    Full text link
    We investigate contributions to diffractive scattering, which are odd under C- and P-parity. Comparison of p-pˉ\bar p and p-p scattering indicates that these odderon contributions are very small and we show how a diquark clustering in the proton can explain this effect. A good probe for the odderon exchange is the photo- and electroproduction of pseudo-scalar mesons. We concentrate on the pi^0 and show that the quasi elastic pi^0-production is again strongly suppressed for a diquark structure of the proton whereas the cross sections for diffractive proton dissociation are larger by orders of magnitude and rather independent of the proton structure.Comment: 18 pages, LaTex2e, graphicx package, 14 eps figures include

    Phase diagram of a Heisenberg spin-Peierls model with quantum phonons

    Get PDF
    Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a non-zero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, which the model maps to in the anti-adiabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.Comment: RevTeX, 5 pages, 3 eps figures included using epsf. Improved theories in adiabatic and non-adiabatic regimes give better agreement with DMRG. This version accepted in Physical Review Letter

    Three-Dimensional Ordering in Weakly Coupled Antiferromagnetic Ladders and Chains

    Full text link
    A theoretical description is presented for low-temperature magnetic-field induced three-dimensional (3D) ordering transitions in strongly anisotropic quantum antiferromagnets, consisting of weakly coupled antiferromagnetic spin-1/2 chains and ladders. First, effective continuum field theories are derived for the one-dimensional subsystems. Then the Luttinger parameters, which determine the low-temperature susceptibilities of the chains and ladders, are calculated from the Bethe ansatz solution for these effective models. The 3D ordering transition line is obtained using a random phase approximation for the weak inter-chain (inter-ladder) coupling. Finally, considering a Ginzburg criterion, the fluctuation corrections to this approach are shown to be small. The nature of the 3D ordered phase resembles a Bose condensate of integer-spin magnons. It is proposed that for systems with higher spin degrees of freedom, e.g. N-leg spin-1/2 ladders, multi-component condensates can occur at high magnetic fields.Comment: RevTex, 18 pages with 7 figure
    • 

    corecore