908 research outputs found

    Spacetime: Arena or Reality?

    Full text link
    For small values of the mass (in relation to the angular momentum and electric charge), the Kerr-Newman (KN) solution of Einstein equation reduces to a naked singularity of circular shape. By considering the Hawking and Ellis extended interpretation of the KN spacetime, as well as Wheeler's idea of "charge without charge", the non-trivial topological structure of the extended KN spatial section is found to represent gravitational states with half-integral angular momentum. As a consequence, it can be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin emerge from the spacetime geometry. According to this model, therefore, instead of a simple arena, spacetime must have a concrete existence, being responsible -- through its highly non-trivial topological structures -- for the building blocks of (at least some of) the existing matter in the universe.Comment: Chapter in the book "Relativity and the Dimensionality of the World", Springer series "Fundamental Theories of Physics", Vol. 153 (2007). Volume Editor: Vesselin Petko

    Kerr-Newman solution as a Dirac particle

    Full text link
    For m^2 < a^2 + q^2, with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr--Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown first that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Next, it is shown that due to the topological structure of the extended KN spacetime it does admit states with half-integral angular momentum. This last property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4pi rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.Comment: 19 pages, 6 figures. References added, section 2 enhanced, an appendix and one figure adde

    Vibrating soap films: An analog for quantum chaos on billiards

    Full text link
    We present an experimental setup based on the normal modes of vibrating soap films which shows quantum features of integrable and chaotic billiards. In particular, we obtain the so-called scars -narrow linear regions with high probability along classical periodic orbits- for the classically chaotic billiards. We show that these scars are also visible at low frequencies. Finally, we suggest some applications of our experimental setup in other related two-dimensional wave phenomena.Comment: 5 pages, 7 figures. Better Postscript figures available on reques

    Torsion and Gravitation: A new view

    Full text link
    According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Despite equivalent, however, they act differently: whereas curvature yields a geometric description, in which the concept of gravitational force is absent, torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means essentially that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent with the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which appears as a mere alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is madeComment: To appear on IJMP
    • …
    corecore