553 research outputs found

    High prevalence of bronchiectasis is linked to HTLV-1-associated inflammatory disease.

    Get PDF
    BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1), a retrovirus, is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukaemia/lymphoma (ATLL). The reported association with pulmonary disease such as bronchiectasis is less certain. METHODS: A retrospective case review of a HTLV-1 seropositive cohort attending a national referral centre. The cohort was categorised into HTLV-1 symptomatic patients (SPs) (ATLL, HAM/TSP, Strongyloidiasis and HTLV associated inflammatory disease (HAID)) and HTLV-1 asymptomatic carriers (ACs). The cohort was reviewed for diagnosis of bronchiectasis. RESULT: 34/246 ACs and 30/167 SPs had been investigated for respiratory symptoms by computer tomography (CT) with productive cough +/- recurrent chest infections the predominant indications. Bronchiectasis was diagnosed in one AC (1/246) and 13 SPs (2 HAID, 1 ATLL, 10 HAM/TSP) (13/167, RR 19.2 95 % CI 2.5-14.5, p = 0.004) with high resolution CT. In the multivariate analysis ethnicity (p = 0.02) and disease state (p < 0.001) were independent predictors for bronchiectasis. The relative risk of bronchiectasis in SPs was 19.2 (95 % CI 2.5-14.5, p = 0.004) and in HAM/TSP patients compared with all other categories 8.4 (95 % CI 2.7-26.1, p = 0.0002). Subjects not of African/Afro-Caribbean ethnicity had an increased prevalence of bronchiectasis (RR 3.45 95 % 1.2-9.7, p = 0.02). CONCLUSIONS: Bronchiectasis was common in the cohort (3.4 %). Risk factors were a prior diagnosis of HAM/TSP and ethnicity but not HTLV-1 viral load, age and gender. The spectrum of HTLV-associated disease should now include bronchiectasis and HTLV serology should be considered in patients with unexplained bronchiectasis

    A New Soldier-Producing Aphid Species, Pseudoregma baenzigeri, sp. nov., from Northern Thailand

    Get PDF
    Pseudoregma baenzigeri, sp. nov., is described from northern Thailand. This species forms dense, huge colonies on shoots of the bamboo Dendrocalamus sp., and produces many first-instar, pseudoscorpion-like soldiers. Alate sexuparae were found from the end of September to mid October. Two syrphids, Eupeodes sp. A (allied to E. confrater) and Dideoides chrysotoxoides, and the pyralid Dipha aphidivora were recorded as predators of P. baenzigeri. The aphids were also likely to be eaten by some rodents. The apterous adult, nymphs, soldier and alate sexupara of P. baenzigeri can be distinguished from those of the other congeners by the longer, conical ultimate rostral segment. A tentative key to the species of Pseudoregma living on bamboo is provided

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    &lt;p&gt;Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.&lt;/p&gt; &lt;p&gt;Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.&lt;/p&gt; &lt;p&gt;Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.&lt;/p&gt
    corecore