532 research outputs found

    Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation

    Get PDF
    In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse & Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated

    The DUAL Approach in an Infinite Horizon Model

    Get PDF
    In this paper we deliver the solution for the DUAL approach Kendrick (1981; 2002) with an infinite horizon. The results of this solutions form the basis for the paper Amman and Tucci (2017)

    Interplay between Coulomb Blockade and Resonant Tunneling studied by the Keldysh Green's Function Method

    Full text link
    A theory of tunneling through a quantum dot is presented which enables us to study combined effects of Coulomb blockade and discrete energy spectrum of the dot. The expression of tunneling current is derived from the Keldysh Green's function method, and is shown to automatically satisfy the conservation at DC current of both junctions.Comment: 4 pages, 3 figures(mail if you need), use revtex.sty, error corrected, changed titl

    Theoretical analysis of quantum dynamics in 1D lattices: Wannier-Stark description

    Get PDF
    This papers presents a formalism describing the dynamics of a quantum particle in a one-dimensional tilted time-dependent lattice. The description uses the Wannier-Stark states, which are localized in each site of the lattice and provides a simple framework leading to fully-analytical developments. Particular attention is devoted to the case of a time-dependent potential, which results in a rich variety of quantum coherent dynamics is found.Comment: 8 pages, 6 figures, submitted to PR

    The failure of the Tacoma Narrows Bridge

    Get PDF
    The Board of Engineers appointed by you to report on the Failure of the Tacoma Narrows Bridge have made a complete investigation of the design, the behaviour after completion and the failure of the structure. Our report covering this investigation follows

    Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles

    Full text link
    We present a microscopic theory of single-electron tunneling through metallic nanoparticles connected to the electrodes through molecular bridges. It combines the theory of electron transport through molecular junctions with the description of the charging dynamics on the nanoparticles. We apply the theory to study single-electron tunneling through a gold nanoparticle connected to the gold electrodes through two representative benzene-based molecules. We calculate the background charge on the nanoparticle induced by the charge transfer between the nanoparticle and linker molecules, the capacitance and resistance of molecular junction using a first-principles based Non-Equilibrium Green's Function theory. We demonstrate the variety of transport characteristics that can be achieved through ``engineering'' of the metal-molecule interaction.Comment: To appear in Phys. Rev.

    Population Density and Seasonality Effects on Sin Nombre Virus Transmission in North American Deermice (Peromyscus maniculatus) in Outdoor Enclosures

    Get PDF
    Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007–2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality

    A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes

    Full text link
    Various double beta decay modes of Cd, Zn and Te isotopes are explored with the help of CdTe and CdZnTe semiconductor detectors. The data set is splitted in an energy range below 1 MeV having a statistics of 134.5 g⋅\cdotd and one above 1 MeV resulting in 532 g⋅\cdotd. No signals were observed in all channels under investigation. New improved limits for the neutrinoless double beta decay of Zn70 of T1/2>1.3⋅1016yrsT_{1/2} > 1.3 \cdot 10^{16} yrs (90% CL), the longest standing limit of all double beta isotopes, and 0νβ+\nu\beta^+EC of Te120 of T1/2>2.2⋅1016yrsT_{1/2} > 2.2 \cdot 10^{16} yrs (90% CL) are given. For the first time a limit on the half-life of the 2ν\nuECEC of 120^{120}Te of T1/2>9.4⋅1015yrsT_{1/2} > 9.4 \cdot 10^{15} yrs (90% CL) is obtained. In addition, limits on 2ν\nuECEC for ground state transitions of Cd106, Cd108 and Zn64 are improved. The obtained results even under rough background conditions show the reliability of CdTe semiconductor detectors for rare nuclear decay searches.Comment: Extended introduction and summar

    Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions

    Full text link
    We study a 1-D array of Josephson coupled superconducting grains with kinetic inductance which dominates over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon model. We find that their classical relativistic motion leads to saturation branches in the I-V characteristic of the array. We then discuss the semi-classical quantization of the charge soliton, and show that it is consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of 100 microns, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the quantum behaviour of the charge soliton.Comment: 26 pages, LaTex, 7 Postscript figure
    • …
    corecore