210 research outputs found

    Defective Autophagy in T Cells Impairs the Development of Diet-Induced Hepatic Steatosis and Atherosclerosis

    Get PDF
    Macroautophagy (or autophagy) is a conserved cellular process in which cytoplasmic cargo is targeted for lysosomal degradation. Autophagy is crucial for the functional integrity of different subsets of T cells in various developmental stages. Since atherosclerosis is an inflammatory disease of the vessel wall which is partly characterized by T cell mediated autoimmunity, we investigated how advanced atherosclerotic lesions develop in mice with T cells that lack autophagy-related protein 7 (Atg7), a protein required for functional autophagy. Mice with a T cell-specific knock-out of Atg7 (Lck-Cre Atg7f/f) had a diminished naïve CD4+ and CD8+ T cell compartment in the spleen and mediastinal lymph node as compared to littermate controls (Atg7f/f). Lck-Cre Atg7f/f and Atg7f/f mice were injected intravenously with rAAV2/8-D377Y-mPCSK9 and fed a Western-type diet to induce atherosclerosis. While Lck-Cre Atg7f/f mice had equal serum Proprotein Convertase Subtilisin/Kexin type 9 levels as compared to Atg7f/f mice, serum cholesterol levels were significantly diminished in Lck-Cre Atg7f/f mice. Histological analysis of the liver revealed less steatosis, and liver gene expression profiling showed decreased expression of genes associated with hepatic steatosis in Lck-Cre Atg7f/f mice as compared to Atg7f/f mice. The level of hepatic CD4+ and CD8+ T cells was greatly diminished but both CD4+ and CD8+ T cells showed a relative increase in their IFNγ and IL-17 production upon Atg7 deficiency. Atg7 deficiency furthermore reduced the hepatic NKT cell population which was decreased to < 0.1% of the lymphocyte population. Interestingly, T cell-specific knock-out of Atg7 decreased the mean atherosclerotic lesion size in the tri-valve area by over 50%. Taken together, T cell-specific deficiency of Atg7 resulted in a decrease in hepatic steatosis and limited inflammatory potency in the (naïve) T cell compartment in peripheral lymphoid tissues, which was associated with a strong reduction in experimental atherosclerosis

    Diet-induced dyslipidemia induces metabolic and migratory adaptations in regulatory T cells

    Get PDF
    A hallmark of advanced atherosclerosis is inadequate immunosuppression by regulatory T(Treg) cells inside atherosclerotic lesions. Dyslipidemia has been suggested to alter Treg cellmigration by affecting the expression of specific membrane proteins, thereby decreasing Treg cellmigration towards atherosclerotic lesions. Besides membrane proteins, cellular metabolism has beenshown to be a crucial factor in Treg cell migration. We aimed to determine whether dyslipidemiacontributes to altered migration of Treg cells, in part, by affecting cellular metabolism.Dyslipidemia was induced by feeding Ldlr-/- mice a Western-type diet for 16-20weeks and intrinsic changes in Treg cells affecting their migration and metabolism were examined.Dyslipidemia was associated with altered mTORC2 signaling in Treg cells, decreased expression ofmembrane proteins involved in migration, including CD62L, CCR7 and S1Pr1, and decreased Tregcell migration towards lymph nodes. Furthermore, we discovered that diet-induced dyslipidemiainhibited mTORC1 signaling, induced PPARδ activation and increased fatty acid (FA) oxidation inTreg cells. Moreover, mass-spectrometry analysis of serum from Ldlr-/- mice with normolipidemia ordyslipidemia showed increases in multiple PPARδ ligands during dyslipidemia. Treatment with asynthetic PPARδ agonist increased the migratory capacity of Treg cells in vitro and in vivo in an FAoxidation dependent manner. Furthermore, diet-induced dyslipidemia actually enhanced Treg cellmigration into the inflamed peritoneum and into atherosclerotic lesions in vitro.Altogether, our findings implicate that dyslipidemia does not contribute toatherosclerosis by impairing Treg cell migration as dyslipidemia associated with an effector-likemigratory phenotype in Treg cells.Analytical BioScience

    IFNγ-stimulated B cells inhibit T follicular helper cells and protect against atherosclerosis

    Get PDF
    B and T cells are interconnected in the T follicular helper-germinal center B cell (TFH-GC B cell) axis, which is hyperactive during atherosclerosis development and loss of control along this axis results in exacerbated atherosclerosis. Inhibition of the TFH-GC B cell axis can be achieved by providing negative co-stimulation to TFH cells through the PD-1/PD-L1 pathway. Therefore, we investigated a novel therapeutic strategy using PD-L1-expressing B cells to inhibit atherosclerosis. We found that IFNγ-stimulated B cells significantly enhanced PD-L1 expression and limited TFH cell development. To determine whether IFNγ-B cells can reduce collar-induced atherosclerosis, apoE -/- mice fed a Western-type diet were treated with PBS, B cells or IFNγ-B cells for a total of 5 weeks following collar placement. IFNγ-B cells significantly increased PD-L1hi GC B cells and reduced plasmablasts. Interestingly, IFNγ-B cells-treated mice show increased atheroprotective Tregs and T cell-derived IL-10. In line with these findings, we observed a significant reduction in total lesion volume in carotid arteries of IFNγ-B cells-treated mice compared to PBS-treated mice and a similar trend was observed compared to B cell-treated mice. In conclusion, our data show that IFNγ-stimulated B cells strongly upregulate PD-L1, inhibit TFH cell responses and protect against atherosclerosis.Biopharmaceutic

    ETHNIC SEGREGATION AND THE ROLE OF PUBLIC HOUSING IN AMSTERDAM

    Get PDF
    Dutch cities are characterized by moderate levels of ethnic (and social) segregation if compared with other countries in the Western world. Dutch cities are also famous for their large share of public housing in the total stock. Not surprisingly these two features are frequently supposed to be causally related. However, in this contribution this association is challenged on the basis of a review of existing and well- described segregation situations, and on the basis of an empirical GIS analysis of micro-level data from the Amsterdam population register. Ethnic segregation may also develop within the large public housing secto

    Intraductal cisplatin treatment in a BRCA-associated breast cancer mouse model attenuates tumor development but leads to systemic tumors in aged female mice

    Get PDF
    BRCA deficiency predisposes to the development of invasive breast cancer. In BRCA mutation carriers this risk can increase up to 80%. Currently, bilateral prophylactic mastectomy and prophylactic bilateral salpingo-oophorectomy are the only preventive, albeit radical invasive strategies to prevent breast cancer in BRCA mutation carriers. An alternative non-invasive way to prevent BRCA1-associated breast cancer may be local prophylactic treatment via the nipple. Using a non-invasive intraductal (ID) preclinical intervention strategy, we explored the use of combined cisplatin and poly (ADP)-ribose polymerase 1 (PARP1) inhibition to prevent the development of hereditary breast cancer. We show that ID cisplatin and PARP-inhibition can successfully ablate mammary epithelial cells, and this approach attenuated tumor onset in a mouse model of Brca1-associated breast cancer from 153 to 239 days. Long-term carcinogenicity studies in 150 syngeneic wild-type mice demonstrated that tumor incidence was increased in the ID treated mammary glands by 6.3% due to systemic exposure to cisplatin. Although this was only evident in aged mice (median age = 649 days), we conclude that ID cisplatin treatment only presents a safe and feasible local prevention option if systemic exposure to the chemotherapy used can be avoided
    corecore