11 research outputs found

    Performance of gradient-based optimizer on charging station placement problem

    Get PDF
    The electrification of transportation is necessary due to the expanded fuel cost and change in climate. The management of charging stations and their easy accessibility are the main concerns for receipting and accepting Electric Vehicles (EVs). The distribution network reliability, voltage stability and power loss are the main factors in designing the optimum placement and management strategy of a charging station. The planning of a charging stations is a complicated problem involving roads and power grids. The Gradient-based optimizer (GBO) used for solving the charger placement problem is tested in this work. A good balance between exploitation and exploration is achieved by the GBO. Furthermore, the likelihood of becoming stuck in premature convergence and local optima is rare in a GBO. Simulation results establish the efficacy and robustness of the GBO in solving the charger placement problem as compared to other metaheuristics such as a genetic algorithm, differential evaluation and practical swarm optimizer

    Numerical Simulations of Gravity Driven Reversible Reactive Flows in Homogeneous Porous Media

    No full text
    The effect of reversibility on the instability of a miscible vertical reactive flow displacement is examined. A model, where densities and/or viscosities mismatches between the reactants and the chemical product trigger instability, is adopted. The problem is governed by the continuity equation, Darcy’s law, and the convection-diffusion-reaction equations. The problem is formulated and solved numerically using a combination of the highly accurate spectral methods based on Hartley’s transform and the finite-difference technique. Nonlinear simulations were carried out for a variety of parameters to analyse the effects of the reversibility of the chemical reaction on the development of the flow under different scenarios of the frontal instability. In general, faster attenuation in the development and growth of the instability is reported as the reversibility of the chemical reaction increases. However, it was observed that reversibility is capable of triggering instability for particular choices of the densities and viscosities mismatches. In addition, the effect of the reversibility in enhancing the instability was illustrated by presenting the total relative contact area between the reactants and the product.Peer Reviewe

    Numerical Simulations of Gravity Driven Reversible Reactive Flows in Homogeneous Porous Media

    Get PDF
    The effect of reversibility on the instability of a miscible vertical reactive flow displacement is examined. A model, where densities and/or viscosities mismatches between the reactants and the chemical product trigger instability, is adopted. The problem is governed by the continuity equation, Darcy’s law, and the convection-diffusion-reaction equations. The problem is formulated and solved numerically using a combination of the highly accurate spectral methods based on Hartley’s transform and the finite-difference technique. Nonlinear simulations were carried out for a variety of parameters to analyse the effects of the reversibility of the chemical reaction on the development of the flow under different scenarios of the frontal instability. In general, faster attenuation in the development and growth of the instability is reported as the reversibility of the chemical reaction increases. However, it was observed that reversibility is capable of triggering instability for particular choices of the densities and viscosities mismatches. In addition, the effect of the reversibility in enhancing the instability was illustrated by presenting the total relative contact area between the reactants and the product

    Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel

    No full text
    Epoxy-Graphene (E/G) nanocomposites with different loading of graphene were prepared via in situ prepolymerization and evaluated as protective coating for Stainless Steel 304 (SS304). The prepolymer composites were spin coated on SS304 substrates and thermally cured. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) were utilized to examine the dispersion of graphene in the epoxy matrix. Epoxy and E/G nanocomposites were characterized using X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) techniques and the thermal behavior of the prepared coatings is analyzed using Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The corrosion protection properties of the prepared coatings were evaluated using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) measurements. In addition to corrosion mitigation properties, the long-term adhesion performance of the coatings was evaluated by measuring the adhesion of the coatings to the SS304 substrate after 60 days of exposure to 3.5 wt% NaCl medium. The effects of graphene loading on the impact resistance, flexibility, and UV stability of the coating are analyzed and discussed. SEM was utilized to evaluate post adhesion and UV stability results. The results indicate that very low graphene loading up to 0.5 wt % significantly enhances the corrosion protection, UV stability, and impact resistance of epoxy coatings

    Natural convection of CuO-water nanofluid in a conventional oil/water separator cavity: Application to combined-cycle power plants

    No full text
    The oily water from various sources in combined cycle power plants is collected in oil/water separator in which the oil separates from water due to the density difference. The idea of the presented geometry is taken from conventional oil/water separators. This paper studies the natural convection of the CuO-water nanoliquid in a rectangular cavity with fins attached to the insulated wall and porous media. Discretion of Navier-Stokes equations is done by Finite Element Method and assumptions are laminar, steady and incompressible flow. Heat transfer performance and entropy generation are investigated for distinct Rayleigh numbers (103–105), Darcy numbers (10−2–10−4), and Hartmann numbers (0, 10, 20). Different sizes of the fins are also studied to show consequences of fin size on heat transfer in cavity. This is the first time that these parameters and their impacts on Nusselt number and entropy generation are studied for a conventional oil/water separator cavity. Corollaries demonstrate that increasing Rayleigh number and Darcy number improves heat transfer performance and average Nusselt number. Nevertheless, Hartmann number has a reverse effect with average Nusselt number. Finally, a new equation for average Nusselt number is developed with regard to Rayleigh number, Hartmann number, and Darcy number

    Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems

    No full text
    Recently, a swarm-based method called Artificial Hummingbird Algorithm (AHA) has been proposed for solving optimization problems. The AHA algorithm mimics the unique flight capabilities and intelligent foraging techniques of hummingbirds in their environment. In this paper, we propose a modified version of the AHA combined with genetic operators called mAHA. The experimental results show that the proposed mAHA improved the convergence speed and achieved better effective search results. Consequently, the proposed mAHA was used for the first time to find the global maximum power point (MPP). Low efficiency is a drawback of photovoltaic (PV) systems that explicitly use shading. Normally, the PV characteristic curve has an MPP when irradiance is uniform. Therefore, this MPP can be easily achieved with conventional tracking systems. With shadows, however, the conditions are completely different, and the PV characteristic has multiple MPPs (i.e., some local MPPs and a single global MPP). Traditional MPP tracking approaches cannot distinguish between local MPPs and global MPPs, and thus simply get stuck at the local MPP. Consequently, an optimized MPPT with a metaheuristic algorithm is required to determine the global MPP. Most MPPT techniques require more than one sensor, e.g., voltage, current, irradiance, and temperature sensors. This increases the cost of the control system. In the current research, a simple global MPPT method with only one sensor is proposed for PV systems considering the shadow conditions. Two shadow scenarios are considered to evaluate the superiority of the proposed mAHA. The obtained results show the superiority of the proposed single sensor based MPPT method for PV systems

    Free convection and second law scrutiny of NEPCM suspension inside a wavy-baffle-equipped cylinder under altered Fourier theory

    No full text
    Background: Free convection and second law scrutiny of nano-encapsulated phase change material (NEPCM) suspension along with entropy production inside a circular cold cylinder involving a wavy hot baffle is a significant thermal management aspect subject to various industrial applications. Phase change material (PCM) undergoes a solid-liquid phase mutation at a particular fusion temperature, and absorbs/releases an appreciable amount of energy because of the latent heat of phase mutation. Hence, NEPCMs would be prospective owing to their capability to enhance the working liquids’ performance, keeping the system at a particular cooling temperature. Methods: In order to simulatethe free convection along with entropy generation of NEPCMs inside a circular cold cylinder entails a wavy hot baffle under CattaneoChristov heat flux model(Altered Fourier theory) and magnetic field, the finite element method (FEM) could be utilized to solve the governing equations. In this study, the amplitude of baffle could be changeable while its undulation number is fixed at 2. Findings: Amplifying Raylegh number intensifies streamlines, isotherms, horizontal and vertical velocities, total entropy generation whittles down local Bejan number. Higher magnetic field strength is responsible for slow movement of NEPCMs and augments local Bejan number. Growth of baffle size yields squeezes the streamlines, horizontal and vertical velocities and intensified tilted isotherms

    Thermo-kinetic study to explicate the bioenergy potential of Holy Thistle (HT)

    No full text
    Biomass is one of the key components for bioenergy generation in recent epoch as traditional resources and depleting swiftly. Going through this fact, the present study aims to appraise the feasibility of Holy Thistle (HT) to produce energy and valuable organic chemicals through pyrolysis. The HT was pyrolyzed at four heating rates including, 10, 20, 30, and 40 °C min−1 to perform thermo kinetic modeling and estimate thermodynamics parameters to establish the pyrolysis reaction process. The pyrolysis process of HT illustrated about 85–88 % of thermal degradation achieved through three different stages from 30 to 800 °C. The major degradation stage was observed from 170 to 450 °C with 55% to 60 % product formation from mainly cellulose and hemicelluloses components. Moreover, the average activation energy and pre-exponential factors demonstrated to be 183–184 kJ mol−1 and 1010 min−1 to 1025 min−1, respectively. The pyrolytic products exhibited agreement to the cleaner production of bio-gas, char and bio-oil which is evident for the potential and productivity of the feed combination
    corecore