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The effect of reversibility on the instability of a miscible vertical reactive flow displacement is examined. A model, where densities
and/or viscosities mismatches between the reactants and the chemical product trigger instability, is adopted. The problem is
governed by the continuity equation, Darcy’s law, and the convection-diffusion-reaction equations. The problem is formulated
and solved numerically using a combination of the highly accurate spectral methods based on Hartley’s transform and the finite-
difference technique. Nonlinear simulations were carried out for a variety of parameters to analyse the effects of the reversibility of
the chemical reaction on the development of the flowunder different scenarios of the frontal instability. In general, faster attenuation
in the development and growth of the instability is reported as the reversibility of the chemical reaction increases. However, it was
observed that reversibility is capable of triggering instability for particular choices of the densities and viscosities mismatches.
In addition, the effect of the reversibility in enhancing the instability was illustrated by presenting the total relative contact area
between the reactants and the product.

1. Introduction

Instability at the interface between flowing solutions in
porous media can be triggered as a result of viscosities
and/or densities mismatch between the fluids.This instability
develops in the form of intruding fingers and is referred to
as viscous fingering or Saffman-Taylor instability in the case
of viscosities mismatch or as density fingering or Rayleigh-
Taylor instability in the case of densities mismatch between
the fluids [1–5].

The simultaneous variation in viscosities and densities is
encountered in various applications. An analytical expression
for the growth of instability in a nonreactive system with
variation in viscosities and densities was derived by Bacri
et al. [6]. In 1992, Rogerson and Meiburg carried out a
linear stability analysis to investigate the interface of a
nonreactive system with densities and viscosities mismatch
in porous media where both normal and tangential velocities
can be present [7]. It was reported that the growth rate
of the instability was not affected by tangential velocity in

immiscible displacements, unlike the miscible displacements
where a stabilizing role was observed. In the same year, the
same authors investigated the nonlinear evolution for the
unstable modes of the same system [8], where remarkable
features of instability such as diagonal fingering and sec-
ondary side-finger instabilities were observed. The effects
of nonmonotonic viscosities and densities profiles on the
instability of vertical nonreactive displacement processes
were investigated by Manickam and Homsy by conducting
nonlinear simulations of the system [9]. The authors found
that a stable viscous interface between the fluids can break
the symmetry of the buoyancy-driven instability by acting as
a barrier against the upward growth of instability.

A simple chemical reaction, 𝐴 + 𝐵 → 𝐶, can change the
physical properties such as viscosity or density of the fluids,
whichmight affect the fate of the displacement process. Reac-
tive flows are encountered inmany applications such as in situ
oil recovery, carbon dioxide sequestration, in situ ground-
water remediation and chromatographic columns, transport
of contaminant, laminar combustive and exothermic reactive
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flows, natural convection heat and mass transport, and
reactive porous media for biological applications [10–14]. It
has been shown that a frontal instability can be purely driven
by a chemical reaction, where a viscous product is generated
at the interface of two reactants with smaller viscosities [15].
In a series of experiments, the effect of chemical reaction on
the viscosity profile of an initially unstable systemwas investi-
gated by Nagatsu et al. [16–18].The properties of the unstable
miscible reactive displacements were analyzed by a number
of theoretical and numerical studies. For example, Rongy et
al. [19] showed that the instability of the interface in a vertical
displacement process can be influenced by buoyancy-driven
convection once the densities of the species are changed
by a chemical reaction even for equal diffusion coefficients
and equal initial concentrations of the reactants. A related
study examined the buoyancy chemically driven instability
where the reaction introduces a heavier product at the initial
interface and where a variation in the diffusion rates of the
solutions exists [20]. For horizontal geometries, Alhumade
and Azaiez carried out a linear stability analysis [21] followed
by nonlinear simulations [22] of the reversible reactive flow
displacements. The authors investigated quantitatively and
qualitatively the effects of the chemical reversibility on the
instability of the flows. Hejazi and Azaiez conducted a
detailed linear stability analysis [23] followed by a nonlinear
simulation [24] of miscible vertical reactive displacement
processes with transverse velocity. More recently, the effects
of time-dependent injections on the dynamics of reactive
flows in homogeneous porous media have been investigated
[25].

The instability ofmiscible reactive solutions under gravity
force is encountered in many underground flows applica-
tions, such as in the geological storage of CO

2
in addition to

mixing of brine [26].The former process involves the dissolu-
tion of carbon dioxide in the reservoir’s fluid and this can be
modeled by a chemical reaction [27]. A heavier solution will
be introduced on top of the reservoir’s lighter fluid as a result
of the CO

2
dissolution, which will establish instability at the

fluids’ interface. The reversibility of the chemical reaction
plays an important role in various fields such as in situ
soil remediation [28] and liquid chromatographic columns
[29]. This motivates the present study aimed at analyzing
the effects of chemical reversibility on the frontal instability
of miscible vertical reactive displacements. In this study,
a system where the variations in viscosities and densities
between the reactants and the product initiate a frontal
instability in the absence of injection or transverse velocities
is examined.

2. Mathematical Model

2.1. Physical Problem. Nonlinear simulations of a two-
dimensional displacement process are carried out in a homo-
geneous reservoir, where the porosity and permeability are
assumed to be constant. The displacement takes place in
the vertical direction, which is referred to as the 𝑥-axis,
while the 𝑦-axis is perpendicular to the direction of the
flow. Furthermore, both the displacing and displaced fluids
are assumed to be incompressible, Newtonian, and miscible.
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Figure 1: Schematic of a reactive front displacement process.

A schematic of the process is shown in Figure 1, where 𝐿𝑥,
𝐿𝑦, and 𝑏 are the length, width, and thickness of the medium,
respectively. When the thickness of the medium is small
compared to the other dimensions, the system corresponds
to a Hele-Shaw cell, which is a common prototype for
homogeneous porous media [4].

Fluid (𝐴) of viscosity 𝜇
𝐴
is on top of fluid (𝐵) of viscosity

𝜇
𝐵
. The two fluids react to generate a chemical product (𝐶)

of viscosity 𝜇
𝐶
that can be different than the viscosities of

both reactants. The chemical reaction is first order and can
be reversible:

𝐴 + 𝐵 ←→ 𝐶 (1)

As time proceeds, more product accumulates at the interface
between the two reactants. Figure 1 shows an idealized
distribution of the two reactants (𝐴) and (𝐵) and the product
(𝐶), with two fronts, one between the reactant (𝐴) and the
product (𝐶), [𝐴-𝐶], while the other is between the reactant
(𝐵) and the product (𝐶), [𝐶-𝐵], and they are referred to as
the trailing and the leading front, respectively. It should be
stressed that this is an idealization of the system and the
three chemical species are actually present to a more or less
degree everywhere in the region where the reaction takes
place. However, this concept of a leading and trailing front
will be helpful in the interpretation and explanation of the
results.

2.2. Governing Equations. The flow is governed by the
equations for conservation of mass, momentum (Darcy’s
equation), and the transport of the three chemical species:

∇ ⋅ u = 0, (2)

∇𝑝 = −
𝜇

𝐾
u+ 𝜌g, (3)
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𝜙
𝜕𝐴

𝜕𝑡
+ u ⋅ ∇𝐴 = 𝜙𝐷

𝐴
∇
2
𝐴 − 𝑘𝐴 ⋅ 𝐵 + 𝑘

𝑟
𝐶, (4)

𝜙
𝜕𝐵

𝜕𝑡
+ u ⋅ ∇𝐵 = 𝜙𝐷

𝐵
∇
2
𝐵 − 𝑘𝐴 ⋅ 𝐵 + 𝑘

𝑟
𝐶, (5)

𝜙
𝜕𝐶

𝜕𝑡
+ u ⋅ ∇𝐶 = 𝜙𝐷

𝐶
∇
2
𝐶 + 𝑘𝐴 ⋅ 𝐵 − 𝑘

𝑟
𝐶. (6)

In the above equation, u = 𝑢i + Vj, where i and j
are the unit vectors along 𝑥 and 𝑦, respectively, while ∇

and ∇
2 are the (nabla) differential and Laplacian operators,

respectively. Furthermore, 𝑝 represents the pressure, 𝑘 the
forward reaction constant, 𝑘

𝑟
the reverse reaction constant,

𝜙 the medium porosity, 𝜇 the viscosity, 𝜌 the density, and
𝐾 the constant medium permeability. Here, the constant
porosity and permeability are integrated in the expression of
the viscosity as 𝜇𝜙/𝐾 and this expression is simply treated
as 𝜇, which is referred to as the mobility or viscosity ratio.
The concentrations of the two reactants and chemical product
are denoted by (𝐴), (𝐵), and (𝐶), respectively, while 𝐷

𝐴
, 𝐷
𝐵
,

and 𝐷
𝐶
represent their corresponding diffusion coefficients.

In the present study, it will be assumed that all species have
the same diffusion coefficient; that is, 𝐷

𝐴
= 𝐷
𝐵

= 𝐷
𝐶

= 𝐷.
Furthermore, the maximum concentrations of both reactants
are equal; that is, 𝑎

0
= 𝑏
0
. Under these conditions, the center

of the reaction region remains at the initial frontal locations
between the two reactants.

The above equations are expressed in a Lagrangian refer-
ence frame moving with constant velocity 𝑈

𝑐ℎ
= 𝑔|∇𝜌|/𝜇

𝐴
,

where |∇𝜌| is the absolute value of the difference between
the densities of the displacing and displaced fluids. The
equations are made nondimensional using 𝑈

𝑐ℎ
, 𝐷𝜙/𝑈

𝑐ℎ
,

and 𝐷𝜙
2
/𝑈
𝐶ℎ

2 as the reference velocity, length, and time,
respectively. Furthermore, the viscosity, density, pressure, and
concentrations are scaled using 𝜇

𝐴
, |∇𝜌|, 𝜇

𝐴
𝐷𝜙/𝐾, and 𝑎

0
.

The resulting dimensionless equations are

∇ ⋅ u = 0, (7)

∇𝑝 = − 𝜇 (u+ 𝑈i) + 𝜌i, (8)

𝜕𝐴

𝜕𝑡
+ u ⋅ ∇𝐴 = ∇

2
𝐴 − 𝐷

𝑎
𝐴𝐵 + 𝐷

𝑟
𝐶, (9)

𝜕𝐵

𝜕𝑡
+u ⋅ ∇𝐵 = ∇

2
𝐵 − 𝐷

𝑎
𝐴𝐵 + 𝐷

𝑟
𝐶, (10)

𝜕𝐶

𝜕𝑡
+u ⋅ ∇𝐶 = ∇

2
𝐶 + 𝐷

𝑎
𝐴𝐵 − 𝐷

𝑟
𝐶. (11)

In the above equation 𝑈 is the injection velocity in the
direction of the flow, which is included only to provide
a complete framework model, and is assumed to be zero
in the rest of this study. The Damkohler number 𝐷

𝑎
=

𝑘𝑎
0
𝐷𝜙/𝑈

𝑐ℎ

2 represents the ratio between the hydrodynamic
time scale and the chemical time scale, while𝐷

𝑟
= 𝑘
𝑟
𝐷𝜙/𝑈

𝑐ℎ

2

represents a reversible Damkohler number.The ratio of these
two dimensionless numbers, 𝛼 = 𝐷

𝑟
/𝐷
𝑎
, will be referred to

as the reversibility coefficient.

Following a previous related study [24], the following
concentration dependent viscosity and density profiles are
adopted to complete the model:

𝜇 = 𝑒
𝑅𝑏𝐵+𝑅𝑐𝐶,

𝜌 = 𝐺
𝑎
𝐴 + 𝐺

𝑏
𝐵 + 𝐺
𝑐
𝐶.

(12)

In the above equation 𝐺
𝑖

= 𝜕𝜌/𝜕𝐶
𝑖
is the density expansion

coefficient of species i, while 𝑅
𝑏
and 𝑅

𝑐
are the log mobility

ratios between the viscosity of (𝐵) to (𝐴) and (𝐶) to (𝐴),
respectively:

𝑅
𝑏

= ln(
𝜇
𝐵

𝜇
𝐴

) ,

𝑅
𝐶

= ln(
𝜇
𝐶

𝜇
𝐴

) .

(13)

In what follows, these log mobility ratios are simply referred
to as the mobility or viscosity ratios. Furthermore, the
mobility ratios at the trailing and leading fronts are referred
to as

𝑅
𝐶𝐵

= ln(
𝜇
𝐵

𝜇
𝐶

(𝐶 = 0.5)
) = 𝑅

𝑏
−

𝑅
𝐶

2
,

𝑅
𝐴𝐶

= ln(
𝜇
𝐶

(𝐶 = 0.5)

𝜇
𝐴

) =
𝑅
𝐶

2
.

(14)

Note that strictly positive 𝑅
𝑖
(𝑖 = 𝑎, 𝑏 or 𝑐) imply that the

corresponding fronts between the fluids are viscously unsta-
ble, while negative values indicate stable fronts. Similarly for
a fluid 𝑗 below a fluid 𝑖, the front is gravitationally unstable if
𝐺
𝑖
> 𝐺
𝑗
and stable, otherwise.

Following previous studies [30–32], the problem is for-
mulated in terms of vorticity𝜔 and stream-functionΨ, which
are related to velocity field as follows:

𝑢 =
𝜕𝜓

𝜕𝑦
,

V = −
𝜕𝜓

𝜕𝑥
,

𝜔 =
𝜕V
𝜕𝑥

−
𝜕𝑢

𝜕𝑦
= − (

𝜕
2
𝜓

𝜕𝑥2 +
𝜕
2
𝜓

𝜕𝑦2 ) .

(15)

The curl of the Darcy’s law equation (8) is taken in order to
eliminate the pressure, which shows that vorticity is produced
by concentration gradients according to the following equa-
tion:

𝜔 = 𝑅
𝑏

(
𝜕𝜓

𝜕𝑥

𝜕𝐵

𝜕𝑥
+

𝜕𝜓

𝜕𝑦

𝜕𝐵

𝜕𝑦
) + 𝑅
𝑐
(

𝜕𝜓

𝜕𝑥

𝜕𝐶

𝜕𝑥
+

𝜕𝜓

𝜕𝑦

𝜕𝐶

𝜕𝑦
)

−
1

𝜇
(𝐺
𝑎

𝜕𝐴

𝜕𝑦
+ 𝐺
𝑏

𝜕𝐵

𝜕𝑦
+ 𝐺
𝑐

𝜕𝐶

𝜕𝑦
) .

(16)
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The boundary conditions in the stream-wise direction in
dimensionless form are

𝑢 = 0;

V = 0;

𝐴 = 1;

𝐵 = 0;

𝐶 = 0

at 𝑥 = −
𝑃𝑒

2

𝑢 = 0;

V = 0;

𝐴 = 0;

𝐵 = 1;

𝐶 = 0

at 𝑥 =
Pe
2

(17)

and in the transverse direction are as follows:

(𝑢; V; 𝐴; 𝐵; 𝐶) (𝑥; −
Pe
2𝐴
𝑟

; 𝑡)

= (𝑢; V; 𝐴; 𝐵; 𝐶) (𝑥;
Pe
2𝐴
𝑟

; 𝑡) .

(18)

In the above equations Pe = 𝑈
𝑐ℎ

𝐿
𝑥
/𝐷𝜙 is the Péclet number

and 𝐴
𝑟

= 𝐿
𝑥
/𝐿
𝑦
is the cell aspect-ratio.

2.3. Numerical Solution. The problem can be solved by
splitting the variables into a base-state part and a perturbation
term, where the base-state is a numerical solution of the
reactive-diffusive-convective equations (4)–(6). Consider

𝐴 (𝑥, 𝑦, 𝑡) = 𝐴0 (𝑥, 𝑦, 0) + 𝑎
󸀠
(𝑥, 𝑦, 𝑡) ,

𝐵 (𝑥, 𝑦, 𝑡) = 𝐵0 (𝑥, 𝑦, 0) + 𝑏
󸀠
(𝑥, 𝑦, 𝑡) ,

𝐶 (𝑥, 𝑦, 𝑡) = 𝐶0 (𝑥, 𝑦, 0) + 𝑐
󸀠
(𝑥, 𝑦, 𝑡) .

(19)

In the above equations, 𝐴
0
, 𝐵
0
, and 𝐶

0
refer to the solutions

of the base-state while 𝑎
󸀠, 𝑏
󸀠, and 𝑐

󸀠 correspond to the
perturbations. The perturbation is initiated as a random
noise centered at the initial interface between the reactants
and that decays rapidly far from the interface [24]. The
magnitude of the initial perturbation may increase, decrease,
or stay constant depending on the density and viscosity
mismatch between the different species.This approach where
the problem is solved in terms of a perturbation results in
periodic boundary conditions in both the stream-wise (𝑥-)
and transverse (𝑦-) directions. Such boundary conditions
allow using the highly accurate spectral methods.

Following previous studies [33–35], the Hartley pseudo-
spectral method is used to evaluate the perturbation part of

the problem. In order to implement the Hartley transform
in numerical analysis, the discrete Hartley transform (DHT)
and the fast Hartley transform (FHT) algorithm were intro-
duced. The two-dimensional DHT of an arbitrary function
𝑔(𝑥, 𝑦, 𝑡) is defined as

𝑔 (𝑘
𝑥
, 𝑘
𝑦
, 𝑡)

= 𝐻 [𝑔 (𝑥, 𝑦, 𝑡)]

=
1

√𝑁
𝑥
𝑁
𝑦

𝑁𝑥

∑

𝑖=1

𝑁𝑦

∑

𝑗=1
𝑔 (𝑥, 𝑦, 𝑡) cas(

2𝜋𝑘
𝑥
𝑥

𝑁
𝑥

+

2𝜋𝑘
𝑦
𝑦

𝑁
𝑦

) .

(20)

The above equation is a version of the DHT definition where
the form of the transform and its inverse are the same. In this
equation cas(𝑥) = cos(𝑥) + sin(𝑥), where 𝑘

𝑥
and 𝑘
𝑦
represent

the discrete wavenumberswhile𝑁
𝑥
and𝑁

𝑦
are the number of

spectral modes in the stream-wise and transverse direction,
respectively.

The derivatives of a function in the Hartley transform
space can be easily derived from the transfer of the function
by using Hartley transform derivative theorems:

𝐻 [
𝜕

𝜕𝑥
𝑔 (𝑥, 𝑦, 𝑡)] = − 2𝑘

𝑥
𝜋𝑔 (−𝑘

𝑥
, − 𝑘
𝑦
, 𝑡) ,

𝐻 [
𝜕

𝜕𝑦
𝑔 (𝑥, 𝑦, 𝑡)] = − 2𝑘

𝑦
𝜋𝑔 (−𝑘

𝑥
, − 𝑘
𝑦
, 𝑡) ,

𝐻 [
𝜕
2

𝜕𝑥2 𝑔 (𝑥, 𝑦, 𝑡)] = − 4𝜋
2
𝑘
2
𝑥
𝑔 (𝑘
𝑥
, 𝑘
𝑦
, 𝑡) ,

𝐻 [
𝜕
2

𝜕𝑦2 𝑔 (𝑥, 𝑦, 𝑡)] = − 4𝜋
2
𝑘
2
𝑦
𝑔 (𝑘
𝑥
, 𝑘
𝑦
, 𝑡) ,

𝐻 [
𝜕
2

𝜕𝑥𝜕𝑦
𝑔 (𝑥, 𝑦, 𝑡)] = − 4𝜋

2
𝑘
𝑥
𝑘
𝑦
𝑔 (𝑘
𝑥
, 𝑘
𝑦
, 𝑡) .

(21)

This shows that the derivative terms reduce to simple alge-
braic expressions in the transform space. As a result, the
original partial differential equations in time and space are
recast into ordinary differential equations in time. The pro-
cedure for time stepping of the reactive-diffusive-convective
equations in the Hartley space was based on a semi-implicit
predictor-corrector method along with an operator-splitting
algorithm [35].

3. Results

3.1. Validation and Convergence of the Numerical Code. The
numerical code was validated by comparing the time evolu-
tion and the related finger structures for the case where the
chemical reaction is complete (𝛼 = 0) with those presented
by Hejazi and Azaiez [24] for the nonreversible case. It was
found that the dynamics of fingering were identical when the
same parameters that characterize the flow were used along
with the same spatial resolution and time step size. Figure 2
depicts the isosurfaces for the irreversible case at 𝑡 = 1250

for the following values of the different parameters: 𝑅
𝑏

= 0,
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Figure 2: Concentration isosurfaces for 𝛼 = 0.0, 𝐺
𝑎

= 𝐺
𝑏

= 1,
𝐺
𝑐

= 4, 𝑅
𝑏

= 0, 𝑅
𝑐

= −3, 𝐴
𝑟

= 2, Pe = 1000, and 𝐷
𝑎

= 1.

𝑅
𝑐

= −3, 𝐺
𝑎

= 𝐺
𝑏

= 1, 𝐺
𝑐

= 4, 𝐴
𝑟

= 2, Pe = 1000,
and 𝐷

𝑎
= 1. These contours are virtually identical to those

reported by Hejazi and Azaiez [24] for this set of parameters’
values.

Furthermore, the numerical convergence of the solution
was analysed by considering cases with different spatial
resolutions that varied from 128 × 128 to 512 × 512 while
varying the time step accordingly. It was found that a spatial
resolution of 256 × 256 resulted in finger structures similar to
those obtained with larger number of grid points. As a result,
a spatial resolution of 256×256with at time stepΔ𝑡 = 0.005 is
used to present the nonlinear simulation results for the effect
of reversibility on the instability of the displacement process.

3.2. Parameters of the Study. In what follows, concentration
isosurfaces are presented to examine the development of the
instability and analyze the role of the chemical reversibility.
The flow evolution will depend on both viscosities and
densities mismatch between the chemical species, in addition
to Pe, 𝐴

𝑟
, 𝐷
𝑎
, and 𝐷

𝑟
. In order to limit the analysis to

the effects of the reversibility of the chemical reaction, the
following parameters are fixed as 𝐴

𝑟
= 2, Pe = 1000, and

𝐷
𝑎

= 1. Furthermore, the analysis will first examine the
cases where instability is only driven by densities mismatch
(𝑅
𝑏

= 𝑅
𝑐

= 0) for both scenarios involving stable (𝐺
𝑎

<

𝐺
𝑏
) and unstable (𝐺

𝑎
> 𝐺
𝑏
) initial fronts. The effects of

mobility mismatch are examined afterwards. For each case,
concentration isosurfaces of the product (𝐶) are presented
for a complete chemical reaction (𝛼 = 0) and for one or two
different nonzero values of the reversibility coefficient (𝛼) in
order to illustrate the effect of reversibility on the dynamics
of fingering.

3.3. Effect of the Densities Mismatch at Equal Mobility Ratios.
In this part, it is assumed that there is no viscosity mismatch
between the chemical species (𝑅

𝑏
= 𝑅
𝑐

= 0) and therefore the
frontal instability depends only on the variation of densities
between the reactants and the product. Flows with unstable

initial reactive fronts (𝐺
𝑎

> 𝐺
𝑏
) are presented first followed

by cases with stable initial fronts (𝐺
𝑎

< 𝐺
𝑏
).

3.3.1. Unstable Initial Reactive Front (𝐺
𝑎

> 𝐺
𝑏
). In a

vertical displacement process, the initial interface between
the displacing and displaced fluids is unstable if the top fluid
(𝐴) is heavier than the bottom one (𝐵) (𝐺

𝑎
> 𝐺
𝑏
).The density

of the chemical product (𝐶) can be either smaller than, larger
than, or in between the densities of (𝐴) and (𝐵). As a result,
regardless of the density of product (𝐶), instability will take
place at least at the trailing or leading fronts, if not at both. In
what follows, various cases of instability are discussed.

The case where the density of the product (𝐶) is larger
than those of both reactants, that is, 𝐺

𝑐
> 𝐺
𝑎

> 𝐺
𝑏
, resulted

in a stable trailing front and an unstable leading front. As a
result, fingers appeared and extended in the direction of the
flow on the leading front as depicted in Figure 3. The figure
shows results for the cases where the chemical reaction is
complete (𝛼 = 0), weakly reversible (𝛼 = 0.3), and strongly
reversible (𝛼 = 0.8).

It is clear that, in this case, reversibility tends to attenuate
the instability of the flow at the unstable leading front, while
there was a noticeable increase in the instability at the trailing
front. In this particular case (𝐺

𝑎
= 4; 𝐺

𝑏
= 1; 𝐺

𝑐
= 10), it

was found that the number of developed fingers increases as
the reaction reverses. However, fingers are less developed and
more diffuse than in the nonreversible case. Furthermore, for
the reversible cases (𝛼 > 0), there is a noticeable variation
in the number of fingers as well as their structure as the
magnitude of 𝛼 changes.

It is worth mentioning that the effects of reversibility on
the instability may vary based on the particular choice of
density differences between the chemical species. To illustrate
this, another simulation was carried out for the previous case
of frontal instability, where instability still takes place at the
leading front but uses different magnitudes of the densities
(𝐺
𝑎

= 2; 𝐺
𝑏

= 1; 𝐺
𝑐

= 4). In this case, the densities
mismatch at the initial interface between the reactants and
that at the unstable leading front are smaller compared to the
previous case (𝐺

𝑎
= 4; 𝐺

𝑏
= 1; 𝐺

𝑐
= 10) and the results

for both complete and reversible reactions are presented in
Figure 4. It can be noticed that reversibility still attenuates the
instability of the system. However, changes in the magnitude
of reversibility have now virtually no effect on both the
development and structures of fingers.

When the density of the product (𝐶) is smaller than those
of both reactants, the variation of densities is favorable at the
trailing front (𝐺

𝑐
< 𝐺
𝑏
) and unfavorable at the leading one

(𝐺
𝑎

> 𝐺
𝑐
).This combination of densities mismatches triggers

instability at the trailing front, while the leading one will be
stable. A simulation was carried out for (𝐺

𝑎
= 4; 𝐺

𝑏
= 2; 𝐺

𝑐
=

1) and it was found that here too reversibility acts towards
reducing the growth of fingers and results in more diffuse,
less developed fingers. In addition, similar finger structures
were observed for reversible reactions with different 𝛼 as the
variation in densities decreases (𝐺

𝑎
= 3; 𝐺

𝑏
= 2; 𝐺

𝑐
=

1). However, for brevity the corresponding contours are not
shown.
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t = 200 t = 500

(a)

t = 200 t = 500

(b)

t = 200 t = 500

(c)

Figure 3: Concentration isosurfaces for 𝐺
𝑎

= 4, 𝐺
𝑏

= 1, and 𝐺
𝑐

= 10 (stable trailing front, unstable leading front): (a) 𝛼 = 0.0, (b) 𝛼 = 0.3,
and (c) 𝛼 = 0.8.

In a reactive displacement process, instability will not
grow at the unstable front until a certain amount of product
(𝐶) is produced. Furthermore, for cases with an unstable
initial front, where instability appears at only one of the
trailing or the leading fronts the densities mismatch at the
unstable front is always larger than that of the initial interface.
As the reaction reverses and part of the chemical product (𝐶)

is converted to (𝐴) and (𝐵), the variation of densities between
the reactants will attenuate the instability by decreasing the
density differences at the unstable trailing or leading front.
Furthermore, the presence of a stable front limits the degree
of mixing between the reactants and this, in addition to the
reduction in the amount of chemical product, attenuates the
instability of the flow. This also explains the fact that there
were no noticeable effects on the fingers development as the
magnitude of the reversibility is changed in the case where a
small variation between the densitiesmismatches at the initial
and the unstable leading fronts is considered (𝐺

𝑎
= 2;𝐺

𝑏
= 1;

𝐺
𝑐

= 4).
For displacements where the density of the product (𝐶)

lies between those of the two reactants, both the trailing and

leading fronts are unstable (𝐺
𝑐

> 𝐺
𝑏
, 𝐺
𝑐

< 𝐺
𝑎
) as shown in

Figure 5 for 𝐺
𝑎

= 3, 𝐺
𝑏

= 1, and 𝐺
𝑐

= 2. In this particular
case, it can be noticed that reversibility has a small tendency
to attenuate the instability of the system. The rather limited
effect of the chemical reversibility in such a system is due
to the rapid mixing between the reactants as instability takes
place at both the trailing and the leading fronts. In addition,
the variations between densities at both fronts are less than
that of the initial interface and as the reaction reverses, the
favorable densities mismatch between the reactants helps to
keep the instability growing, regardless of how fast product
(𝐶) is converted back to (𝐴) and (𝐵). It should be noted
that, in this particular case, stronger reversibility has a hardly
noticeable effect on the structure of the fingers.

In all previous cases, reversibility tends to attenuate
or slightly enhance the instability of the reactive system.
However, the effect of reversibility on the instability where
both the trailing and the leading fronts are unstable may vary
as the densities gap between the reactants increases. This is
well illustrated in Figure 6 where 𝐺

𝑎
= 4, 𝐺

𝑏
= 1, and 𝐺

𝑐
= 2.

For this choice of the density coefficients, there is actually
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t = 1000 t = 2000

(a)

t = 1000 t = 2000

(b)

t = 1000 t = 2000

(c)

Figure 4: Concentration isosurfaces for 𝐺
𝑎

= 2, 𝐺
𝑏

= 1, and 𝐺
𝑐

= 4 (stable trailing front, unstable leading front): (a) 𝛼 = 0.0, (b) 𝛼 = 0.3,
and (c) 𝛼 = 0.8.

a tendency for the fingers at both the trailing and leading
fronts to extend more and have more interactions, when the
reaction is reversible. Here, the fingers are more diffuse but
more developed in the reversible cases, and the change in
the degree of reversibility (i.e., 𝛼) does actually have a strong
noticeable effect on the fingers structures.

The strong effect of reversibility in increasing the insta-
bility at the leading front can be explained by looking at the
variation of the density coefficients at that interface. When
the chemical reaction is complete, the growth of instability
at the leading front depends on the densities gap between
reactant (𝐵) and product (𝐶) (𝐺

𝑏
= 1; 𝐺

𝑐
= 2). However,

as the reaction reverses, the favorable densities mismatch
of the initial interface (𝐺

𝑎
= 4; 𝐺

𝑏
= 1) increases the

variation in densities mismatch at the leading front, which
explains the effect of reversibility in boosting the instability
at that front. On the other hand, the small variation in
densities gaps at the initial and the trailing fronts explains the
limited effect of reversibility on the instability at the trailing
front.

3.3.2. Stable or Neutrally Stable Initial Reactive Front (𝐺
𝑎

≤

𝐺
𝑏
). The initial interface between the two reactants is stable

or neutrally stable if the density of the displacing fluid is
either smaller or equal to that of the displaced fluid (𝐺

𝑏
≥

𝐺
𝑎
). However, as the reaction takes place and product (𝐶)

appears at the initial interface, depending on the density of
the product, instability may develop at either the trailing or
the leading front, but not at both. The case where the density
of (𝐶) lies between those of (𝐵) and (𝐴) or is equal to both
or any of them (𝐺

𝑏
≥ 𝐺
𝑐

≥ 𝐺
𝑎
) will result in a stable

displacement process and therefore will not be discussed. In
what follows, the two cases where instability appears at either
the trailing or the leading front are discussed.

An unstable trailing front and a stable leading front are
observed in the case where the density of chemical product
is smaller than that of both reactants. On the other hand,
an unstable leading front and a stable trailing front are
observed when the density of the product (𝐶) is larger than
those of both reactants (𝐺

𝑎
= 1; 𝐺

𝑏
= 2; 𝐺

𝑐
= 5) as

shown in Figure 7. It is worth mentioning that unlike the
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t = 800t = 500

(a)

t = 800t = 500

(b)

t = 800t = 500
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Figure 5: Concentration isosurfaces for 𝐺
𝑎

= 3, 𝐺
𝑏

= 1, and 𝐺
𝑐

= 2 (unstable trailing front, unstable leading front): (a) 𝛼 = 0.0, (b) 𝛼 = 0.3,
and (c) 𝛼 = 0.8.

previously discussed cases with an unstable initial front the
mixing between the two reactants when the initial front
is stable is mainly controlled by diffusion. As a result, the
growth of fingers is rather slow compared to cases with an
unstable initial front. In both cases, reversibility tends to
reduce the instability at the unstable front and may actually
result in a stable system for a period of time. This reduction
in instability is due to the fact that the unfavorable densities
gap between the reactants reduces the variation of densities
at the unstable front. However, depending on the magnitude
of the reversibility coefficient and the variation of densities
at the unstable front, instability will eventually develop at the
unstable front at later times. A small reversibility coefficient
combined with a large densities gap will result in an earlier
development of the instability as shown in Figure 8. A
complete stabilization of the system in these cases is due to the
limited amount of the product (𝐶) at the unstable front, which
in addition to the very weak mixing between the reactants
delayed the development of the instability.The case where the
instability takes place at the trailing front (𝐺

𝑎
= 2; 𝐺

𝑏
= 4;

𝐺
𝑐

= 1) was also examined. Here too, reversibility attenuated

the instability and resulted in stable system for a period of
time; however for brevity the corresponding contours are not
presented.

3.4. Effect of the Mobility Ratios. In a displacement process,
the variations in the densities of the fluids involved are
not the only source of instability. In fact, frontal instability
can also be encountered as the viscosities of these fluids
vary. In a displacement process, the interface between the
displacing and displaced fluid is unstable or stable, if the
viscosity of the displacing fluid is smaller or larger than that
of the displaced one, respectively. In this part, the effect of
viscosities mismatch on the instability of a reversible reactive
displacement process is examined by including the variations
of the viscosities of the species involved in the displacement
in addition to their densities.

In a vertical displacement process, a stable or neutrally
stable viscous interface (𝑅

𝑏
≤ 0) will limit the degree

of mixing between the chemical species and consequently
attenuates the instability of the system. Moreover, a favorable
mobility ratio (𝑅

𝑏
> 0) at the initial interface will help the
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t = 600t = 500

(a)

t = 600t = 500

(b)

t = 600t = 500

(c)

Figure 6: Concentration isosurfaces for 𝐺
𝑎

= 4, 𝐺
𝑏

= 1, and 𝐺
𝑐

= 2 (unstable trailing front, unstable leading front): (a) 𝛼 = 0.0, (b) 𝛼 = 0.3,
and (c) 𝛼 = 0.8.

t = 6500t = 5000

(a)

t = 6500t = 5000

(b)

Figure 7: Concentration isosurfaces for 𝐺
𝑎

= 1, 𝐺
𝑏

= 2, and 𝐺
𝑐

= 5 (stable trailing front, unstable leading front): (a) 𝛼 = 0.0, (b) 𝛼 = 0.8.
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t = 2000 t = 4000

Figure 8: Concentration isosurfaces for 𝐺
𝑎

= 1, 𝐺
𝑏

= 2, 𝐺
𝑐

= 10,
and 𝛼 = 0.8 (stable trailing front, unstable leading front).

mixing between the species and enhance the instability of
the system. However, in the absence of injection, the mixing
between the species is controlled by diffusion rather than
convection.

Starting with the unstable initial viscous interface, mobil-
ity ratios of 𝑅

𝑏
= 2 and 𝑅

𝑐
= 3, which result in

both the trailing (𝑅
𝑐
/2) and the leading (𝑅

𝑏
− 𝑅
𝑐
/2) fronts

being viscously unstable. Figure 9 depicts the results for the
examined case for both complete (𝛼 = 0) and strongly
reversible (𝛼 = 0.8) reactions. From the figure, it can be
noticed that the growth of the instability is much weaker
compared to the same case in the absence of viscosities’
contrast (Figure 6).

The case where the viscous initial interface between the
reactants is stable (𝑅

𝑏
< 0) is examined using mobility ratios

of 𝑅
𝑏

= −2 and 𝑅
𝑐

= 3. Here, the trailing front is viscously
unstable (𝑅

𝑐
/2), while the leading front is viscously stable.

The nonlinear simulation results are presented in Figure 10
for both cases of complete (𝛼 = 0) and extremely reversible
(𝛼 = 0.8) reactions. In this case, the unfavorable mobility
ratio between the reactants enhances the mixing between the
chemical species, which enriched the instability of the system
and resulted in an earlier development of the instability
compared to the same case in absence of viscosities mismatch
(Figure 4).

It is worth mentioning that, in the previous two cases,
reversibility had an opposite influence on the instability
where it enhanced/attenuated the instability instead of atten-
uating/enhancing the instability for the cases (𝐺

𝑎
= 2;𝐺

𝑏
= 1;

𝐺
𝑐

= 4) and (𝐺
𝑎

= 4; 𝐺
𝑏

= 1; 𝐺
𝑐

= 2), respectively.
Furthermore, the previous two cases were considered as an
example where either the densities or viscosities mismatch
was in favor of the growth of the instability while the other
was not. However the instability will be enhanced/attenuated
when both densities and viscosities mismatches are in favor
of the growth/reduction of the instability. Finally, it should
be stressed that these results are observed in the absence
of injection and the effects of viscosities on the instability
may actually vary with the speed of injection. The observed

effects of the variation of viscosities can be explained by
the countered relation between viscosity and diffusion [9,
36]. In the absence of injection, the mixing is controlled by
diffusion and the increased/decreasedmobility ratio between
the reactants limits/helps the mixing between the reactants
and as a consequence attenuates/enhances the instability.

3.5. Quantitative Analysis. In this part, the effects of
reversibility on the instability of the reactive system are
illustrated by presenting the relative contact area (R.C.A.) of
the system, which is defined as the area of contact between
the species involved in the displacement process scaled by the
cross-sectional area of the cell.

This contact area is determined by measuring the length
of a contour that corresponds to a specific concentration’s
value of one of the species, which is the product (𝐶) in this
case. There are two contact interfaces to be measured; one
corresponds to the leading front and the other to the trailing
front. The contour that corresponds to concentration of 0.01
of the chemical product (𝐶 = 0.01) is used to determine the
length of the contact areas at both fronts.

Measuring the contact area between the species is a
good criterion to quantify the development of the instability.
Moreover, this contact area is expected to increase as the
complexity of the fingering structures increases. The R.C.A.
for the case where an increase in the instability of the reactive
front was observed (𝐺

𝑎
= 4; 𝐺

𝑏
= 1; 𝐺

𝑐
= 2) has

been determined and its variation with time is depicted
in Figure 11. In this case, the densities mismatch triggers
instability at both fronts in the absence of viscous effects.The
results confirmwhat has been reported in the qualitative part
where an increase in the instability of the leading front has
been observed as the reaction reverses. Furthermore, it can be
noticed that the growth of the instability or equivalently the
contact area between the species at the trailing front is larger
than that at the leading one, which is a direct consequence of
the larger densities mismatch at the trailing front.

Furthermore, the relative contact areas were also deter-
mined for the cases where the instability is triggered by both
density and viscosity mismatches and it was observed that
the contact areas grow faster/slower than the cases with only
density mismatch, as the viscosity mismatches help/attenuate
the instability when the reaction reverses.

It is worth mentioning that the growth of the instability
when the reaction reverses is always slower than that of the
complete reactions, at both the trailing and the leading fronts
at early stages. Again, this is a result of the reduction in
the total amount of the chemical product (𝐶). However, as
time proceeds andmore chemical product accumulates at the
reactive interfaces, the effect of converting part of (𝐶) back to
(𝐴) and (𝐵) becomes more pronounced.

4. Conclusion and Discussion

The main objective of this study was to determine the
effects of chemical reversibility on the overall efficiency of a
vertical reversible reactive displacement process. The frontal
instability is triggered by the densities combined or not with
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t = 1500

(a)

t = 1500

(b)

Figure 9: Concentration isosurfaces for 𝐺
𝑎

= 4, 𝐺
𝑏

= 1, 𝐺
𝑐

= 2, 𝑅
𝑏

= 2, and 𝑅
𝑐

= 3: (a) 𝛼 = 0.0, (b) 𝛼 = 0.8.

t = 1000

(a)

t = 1000

(b)

Figure 10: Concentration isosurfaces for 𝐺
𝑎

= 2, 𝐺
𝑏

= 1, 𝐺
𝑐

= 4, 𝑅
𝑏

= −2, and 𝑅
𝑐

= 3: (a) 𝛼 = 0.0, (b) 𝛼 = 0.8.

viscosities’ mismatch between the reactants and the product.
The nonlinear interactions between the fluids were captured
for different scenarios of frontal instability at specific sets of
parameters. It was found that the fate of the displacement
process can be dramatically influenced when a reversible
chemical reaction takes place between the displacing and
the displaced fluids, which introduces a new fluid with a
viscosity and density that might be different from those
of both reactants. The dynamics of fingering were mainly
controlled by the viscosities and densities mismatch at the
initial front as well as the trailing and the leading fronts in
addition to the magnitude of the reversibility of the reaction.

The development of the instability was much faster in
cases where the initial front between the reactants was
unstable (𝐺

𝑎
> 𝐺

𝑏
) compared to cases with a stable

initial front (𝐺
𝑎

≤ 𝐺
𝑏
). This was attributed to the higher

production rate in the former case, which is a result of the fast
mixing between the reactants. The frontal instability of the

reactive leading and trailing fronts determines the direction
of fingers development, where they develop in the upstream
or downstream direction when the instability appears only at
the trailing or the leading front, respectively, if not in both
directions when both fronts are unstable.

In the absence of viscosity differences between the
chemicals, the effect of chemical reversibility was found to
be similar for cases where only one of the trailing or the
leading fronts is unstable regardless of the nature of the
instability at the initial front. For those cases, the attenuation
of the fingering instability increases with the increase in the
magnitude of reversibility. Moreover, a complete stabilization
of the system was reported for cases with stable initial fronts
(𝐺
𝑎

≤ 𝐺
𝑏
). Furthermore, for unstable initial fronts similar

fingering structures were observed for reversible reactions
with different magnitude of reversibility as the densities dif-
ference between the reactants decreases. It was also found that
reversibility has a weak tendency to attenuate the instability
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Figure 11: Variations of the relative contact area (R.C.A.) for 𝐺
𝑎

= 4, 𝐺
𝑏

= 1, 𝐺
𝑐

= 2, and 𝑅
𝑏

= 𝑅
𝑐

= 0: (a) R.C.A. at the leading front, (b)
R.C.A. at the trailing front, and (c) total R.C.A.

when both of the reactive fronts are unstable combined with
virtually unnoticeable changes in the fingering structures
when there is a small variation in the densities (𝐺

𝑎
= 3; 𝐺

𝑏
=

1; 𝐺
𝑐

= 2). However, an enhancement of the instability was
observed as the variation of the densities increases (𝐺

𝑎
= 4;

𝐺
𝑏

= 1; 𝐺
𝑐

= 2). The fast mixing between the reactants
and the favorable densities mismatch between the reactants
help sustaining the growth of the instability regardless of
the magnitude of the reversibility. These results indicate that
the general overall stabilizing effects of chemical reversibility
would lead to a smoother front and consequently a better
sweep efficiency of the process. The more diffuse nature of
the interface implies stronger mixing of the displaced and
displacing fluid.

Finally, it was observed that increasing the viscosities
mismatch between the chemical species in order to achieve
viscously unstable trailing and leading fronts attenuated the
instability of the system by limiting the degree of mixing
between the chemicals. On the other hand, the stable initial
viscous interface (𝑅

𝑏
< 0) enhanced the instability of the

displacement process.
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