6,261 research outputs found

    Non-Invasive Induction Link Model for Implantable Biomedical Microsystems: Pacemaker to Monitor Arrhythmic Patients in Body Area Networks

    Full text link
    In this paper, a non-invasive inductive link model for an Implantable Biomedical Microsystems (IBMs) such as, a pacemaker to monitor Arrhythmic Patients (APs) in Body Area Networks (BANs) is proposed. The model acts as a driving source to keep the batteries charged, inside a device called, pacemaker. The device monitors any drift from natural human heart beats, a condition of arrythmia and also in turn, produces electrical pulses that create forced rhythms that, matches with the original normal heart rhythms. It constantly sends a medical report to the health center to keep the medical personnel aware of the patient's conditions and let them handle any critical condition, before it actually happens. Two equivalent models are compared by carrying the simulations, based on the parameters of voltage gain and link efficiency. Results depict that the series tuned primary and parallel tuned secondary circuit achieves the best results for both the parameters, keeping in view the constraint of coupling co-efficient (k), which should be less than a value \emph{0.45} as, desirable for the safety of body tissues.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme

    Get PDF
    The envisioned dense nano-network inside the human body at terahertz (THz) frequency suffers a communication performance degradation among nano-devices. The reason for this performance limitation is not only the path loss and molecular absorption noise, but also the presence of multi-user interference and the interference caused by utilising any communication scheme, such as time spread ON—OFF keying (TS-OOK). In this paper, an interference model utilising TS-OOK as a communication scheme of the THz communication channel inside the human body has been developed and the probability distribution of signal-to-interference-plus-noise ratio (SINR) for THz communication within different human tissues, such as blood, skin, and fat, has been analyzed and presented. In addition, this paper evaluates the performance degradation by investigating the mean values of SINR under different node densities in the area and the probabilities of transmitting pulses. It results in the conclusion that the interference restrains the achievable communication distance to approximate 1 mm, and more specific range depends on the particular transmission circumstance. Results presented in this paper also show that by controlling the pulse transmission probability and node density, the system performance can be ameliorated. In particular, SINR of in vivo THz communication between the deterministic targeted transmitter and the receiver with random interfering nodes in the medium improves about 10 dB, when the node density decreases one order. The SINR increases approximate 5 and 2 dB, when the pulse transmitting probability drops from 0.5 to 0.1 and 0.9 to 0.5

    Modelling of the Terahertz Communication Channel for In-vivo Nano-networks in the Presence of Noise

    Get PDF
    This paper focuses on the modelling of communication channel noise inside human tissues at the THz band (0.1-10THz). A novel model is put forward based on the study of the physical mechanism of the channel noise in the medium, which takes into account both the radiation of the medium and the molecular absorption from the transmitted signal. The derivation and the general concepts of the noise modelling is detailed in the paper. The results show that the channel noise power spectral density at the scale of several micrometres is at acceptable levels and the value tends to decrease with the increase of both distance and frequency. In addition, the channel noise is also related to the composition of the human tissues, with the result of higher channel noise in tissues with higher water concentration. The conclusion drawn from the conducted study and analysis paves the way for more comprehensive characterisation of the electromagnetic channel within in-vivo nano-networks

    THz Time Domain Characterization of Human Skin Tissue for Nano-Electromagnetic Communication

    Get PDF
    This paper presents an experimental investigation of excised human skin tissue material parameters by THz Time Domain Spectroscopy in the band 0.1-2.5 THz. The results are used to evaluate the channel path loss Nano-electromagnetic communication. Refractive index and absorption coefficient values are evaluated for dermis layer of the human skin. Results obtained illustrate the effect of hydrated tissue on channel parameters and provide the optimum distance, which can be utilized for effective communication inside the human skin

    Performance of ultrawideband wireless tags for on-body radio channel characterisation

    Get PDF
    Experimental characterisation of on-body radio channel for ultrawideband (UWB) wireless active tags is reported in this paper. The aim of this study is to investigate the performance of the commercially available wireless tags on the UWB on-body radio channel characterisation. Measurement campaigns are performed in the chamber and in an indoor environment. Statistical path loss parameters of nine different on-body radio channels for static and dynamic cases are shown and analyzed. Results demonstrated that lognormal distribution provides the best fits for on-body propagation channels path loss model. The path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. A reduction of 11.46% path loss exponent is noticed in case of indoor environment as compared to anechoic chamber. In addition, path loss exponent is also extracted for different body parts (trunk, arms, and legs). Second-order channel parameters as fade probability (FP), level crossing rate (LCR), and average fade duration (AFD) are also investigated

    Direct NN-body simulations of globular clusters - II. Palomar 4

    Get PDF
    We use direct NN-body calculations to study the evolution of the unusually extended outer halo globular cluster Palomar 4 (Pal~4) over its entire lifetime in order to reproduce its observed mass, half-light radius, velocity dispersion and mass function slope at different radii. We find that models evolving on circular orbits, and starting from a non-mass segregated, canonical initial mass function (IMF) can reproduce neither Pal 4's overall mass function slope nor the observed amount of mass segregation. Including either primordial mass segregation or initially flattened IMFs does not reproduce the observed amount of mass segregation and mass function flattening simultaneously. Unresolved binaries cannot reconcile this discrepancy either. We find that only models with both a flattened IMF and primordial segregation are able to fit the observations. The initial (i.e. after gas expulsion) mass and half-mass radius of Pal~4 in this case are about 57000 M{\odot} and 10 pc, respectively. This configuration is more extended than most globular clusters we observe, showing that the conditions under which Pal~4 formed must have been significantly different from that of the majority of globular clusters. We discuss possible scenarios for such an unusual configuration of Pal~4 in its early years.Comment: 14 pages, 12 figures, 1 tabl

    Analytical modelling of the effect of noise on the terahertz in-vivo communication channel for body-centric nano-networks

    Get PDF
    The paper presents an analytical model of the terahertz (THz) communication channel (0.1 - 10 THz) for in-vivo nano-networks by considering the effect of noise on link quality and information rate. The molecular absorption noise model for in-vivo nano-networks is developed based on the physical mechanisms of the noise present in the medium, which takes into account both the radiation of the medium and the molecular absorption from the transmitted signal. The signal-to-noise ratio (SNR) of the communication channel is investigated for different power allocation schemes and the maximum achievable information rate is studied to explore the potential of THz communication inside the human body. The obtained results show that the information rate is inversely proportional to the transmission distance. Based on the studies on channel performance, it can be concluded that the achievable transmission distance of in-vivo THz nano-networks should be restrained to approximately 2 mm maximum, while the operation band of in-vivo THz nano-networks should be limited to the lower band of the THz band. This motivates the utilisation of hierarchical/cooperative networking concepts and hybrid communication techniques using molecular and electromagnetic methods for future body-centric nano-networks

    Pengungkapan Corporate Social Responsibility (Survei Pada Perusahaan Yang Termasuk Dalam Indeks Sri Kehati)

    Full text link
    The objective of this study is to examine the influence of corporate governance mechanism on the disclosure of CSR. Studies conducted on the companies included in the SRI KEHATI index during 2011-2014. The study obtained 18 companies as sample of this study. The results of multiple linear regression analysis showed  that  the  audit  committee  and independent commissioner have no influence on the disclosure of CSR, while institutional ownership was found to have influence on the disclosure of CSR. The study implies that the stakeholders are able to change the dimensions of CSR implementation, whereby previously it was only for humanitarian and environmental aspects, CSR is now able to increase its profit and finally the goal to sustainability can be manifeste
    corecore