299 research outputs found
Formation and characterization of FeLV iscoms.
Immunostimulating complexes (ISCOMs) have been prepared from feline leukaemia virus (FeLV) envelope proteins. The ISCOMs were characterized biochemically in SDS-polyacrylamide gel electrophoresis showing the presence of proteins of estimated molecular weights of 15,000, 27,000 and 70,000. Immunoblotting showed that both the transmembrane protein p15E and the external glycoprotein gp70 (making up the gp85 protein) were present in the ISCOM. Furthermore, a degradation product of gp70 with an estimated molecular weight of 32,000 was identified in the immunoblot. The FeLV ISCOM was shown by electron microscopy to have the characteristic cage-like structure of an ISCOM with a mean diameter of 37 nm. About 10% of the total amount of gp70 in the culture fluid was recovered in the ISCOMs. The largest loss was encountered during the sedimentation of the virus. In a preliminary immunization experiment in mice the FeLV ISCOMs elicited after a booster gave a clear-cut immune response against gp70
Nonrelativistic Chern-Simons Vortices on the Torus
A classification of all periodic self-dual static vortex solutions of the
Jackiw-Pi model is given. Physically acceptable solutions of the Liouville
equation are related to a class of functions which we term
Omega-quasi-elliptic. This class includes, in particular, the elliptic
functions and also contains a function previously investigated by Olesen. Some
examples of solutions are studied numerically and we point out a peculiar
phenomenon of lost vortex charge in the limit where the period lengths tend to
infinity, that is, in the planar limit.Comment: 25 pages, 2+3 figures; improved exposition, corrected typos, added
one referenc
Infrared stability of ABJ-like theories
We consider marginal deformations of the superconformal ABJM/ABJ models which
preserve N=2 supersymmetry. We determine perturbatively the spectrum of fixed
points and study their infrared stability. We find a closed line of fixed
points which is IR stable. The fixed point corresponding to the ABJM/ABJ models
is stable under marginal deformations which respect the original SU(2)xSU(2)
invariance, while deformations which break this group destabilize the theory
which then flows to a less symmetric fixed point. We discuss the addition of
flavor degrees of freedom. We prove that in general a flavor marginal
superpotential does not destabilize the system in the IR. An exception is
represented by a marginal coupling which mixes matter charged under different
gauge sectors. Finally, we consider the case of relevant deformations which
should drive the system to a strongly coupled IR fixed point recently
investigated in arXiv:0909.2036 [hep-th].Comment: 1+11 pages, 4 figures; v2: minor correction
Holomorphic variables in magnetized brane models with continuous Wilson lines
We analyze the action of the target-space modular group in toroidal type IIB
orientifold compactifications with magnetized D-branes and continuous Wilson
lines. The transformation of matter fields agree with that of twisted fields in
heterotic compactifications, constituting a check of type I/heterotic duality.
We identify the holomorphic N = 1 variables for these compactifications. Matter
fields and closed string moduli are both redefined by open string moduli. The
redefinition of matter fields can be read directly from the perturbative Yukawa
couplings, whereas closed string moduli redefinitions are obtained from D-brane
instanton superpotential couplings. The resulting expressions reproduce and
generalize, in the presence of internal magnetic fields, previous results in
the literature.Comment: 9 pages, no figures; v2: conventions for Wilson lines changed, major
simplifications in expressions, discussions extended, typos corrected, some
references adde
The Conformal Manifold of Chern-Simons Matter Theories
We determine perturbatively the conformal manifold of N=2 Chern-Simons matter
theories with the aim of checking in the three dimensional case the general
prescription based on global symmetry breaking, recently introduced. We discuss
in details few remarkable cases like the N=6 ABJM theory and its less
supersymmetric generalizations with/without flavors. In all cases we find
perfect agreement with the predictions of global symmetry breaking
prescription.Comment: 1+17 pages, 1 figure, references adde
Effective action of three-dimensional extended supersymmetric matter on gauge superfield background
We study the low-energy effective actions for gauge superfields induced by
quantum N=2 and N=4 supersymmetric matter fields in three-dimensional Minkowski
space. Analyzing the superconformal invariants in the N=2 superspace we propose
a general form of the N=2 gauge invariant and superconformal effective action.
The leading terms in this action are fixed by the symmetry up to the
coefficients while the higher order terms with respect to the Maxwell field
strength are found up to one arbitrary function of quasi-primary N=2
superfields constructed from the superfield strength and its covariant spinor
derivatives. Then we find this function and the coefficients by direct quantum
computations in the N=2 superspace. The effective action of N=4 gauge multiplet
is obtained by generalizing the N=2 effective action.Comment: 1+27 pages; v2: minor corrections, references adde
Moduli Stabilisation and de Sitter String Vacua from Magnetised D7 Branes
Anomalous U(1)'s are ubiquitous in 4D chiral string models. Their presence
crucially affects the process of moduli stabilisation and cannot be neglected
in realistic set-ups. Their net effect in the 4D effective action is to induce
a matter field dependence in the non-perturbative superpotential and a
Fayet-Iliopoulos D-term. We study flux compactifications of IIB string theory
in the presence of magnetised D7 branes. These give rise to anomalous U(1)'s
that modify the standard moduli stabilisation procedure. We consider simple
orientifold models to determine the matter field spectrum and the form of the
effective field theory. We apply our results to one-modulus KKLT and
multi-moduli large volume scenarios, in particular to the Calabi-Yau
P^4_{[1,1,1,6,9]}. After stabilising the matter fields, the effective action
for the Kahler moduli can acquire an extra positive term that can be used for
de Sitter lifting with non-vanishing F- and D-terms. This provides an explicit
realization of the D-term lifting proposal of hep-th/0309187.Comment: 35 pages, 1 figure. v2: Minor changes, references adde
Exactly Marginal Deformations and Global Symmetries
We study the problem of finding exactly marginal deformations of N=1
superconformal field theories in four dimensions. We find that the only way a
marginal chiral operator can become not exactly marginal is for it to combine
with a conserved current multiplet. Additionally, we find that the space of
exactly marginal deformations, also called the "conformal manifold," is the
quotient of the space of marginal couplings by the complexified continuous
global symmetry group. This fact explains why exactly marginal deformations are
ubiquitous in N=1 theories. Our method turns the problem of enumerating exactly
marginal operators into a problem in group theory, and substantially extends
and simplifies the previous analysis by Leigh and Strassler. We also briefly
discuss how to apply our analysis to N=2 theories in three dimensions.Comment: 23 pages, 2 figure
Non-perturbative Vacuum Destabilization and D-brane Dynamics
We analyze the process of string vacuum destabilization due to instanton
induced superpotential couplings which depend linearly on charged fields. These
non-perturbative instabilities result in potentials for the D-brane moduli and
lead to processes of D-brane recombination, motion and partial moduli
stabilization at the non-perturbative vacuum. By using techniques of D-brane
instanton calculus, we explicitly compute this scalar potential in toroidal
orbifold compactifications with magnetized D-branes by summing over the
possible discrete instanton configurations. We illustrate explicitly the
resulting dynamics in globally consistent models. These instabilities can have
phenomenological applications to breaking hidden sector gauge groups, open
string moduli stabilization and supersymmetry breaking. Our results suggest
that breaking supersymmetry by Polonyi-like models in string theory is more
difficult than expected.Comment: 61 pages, 6 figures, 5 tables; Minor corrections, version published
in JHE
- …