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1 Introduction

In the last decade, D-brane model building has become an outstanding approach for real-

izing semi-realistic chiral gauge theories within compactifications of String Theory [1–3].

Chirality in these constructions usually requires the presence of intersecting/magnetized

D-branes. It is therefore of particular relevance to obtain expressions for the 4d effective

action in these models. Efforts along that direction probably start with the computation of

Yukawa couplings in [4–7], and extend until the recently developed D-brane instanton cal-

culus which allows the computation of non-perturbative superpotential couplings in these

models (see e.g. [8] and references therein). Moreover, higher order couplings can be ex-

pressed in terms of 3-point couplings [5, 6, 9, 10], similarly to what happens in heterotic

orbifold models. Thus, for many purposes, it suffices to study Yukawa couplings.

Whereas by now the picture that we have of the low energy effective action is fairly

complete, there are still some aspects concerning the definition of N = 1 chiral variables

in the presence of open string moduli which we believe deserve some further study.

More precisely, in a generic type II compactification the moduli space of open-

string deformations (positions and Wilson lines of the D-branes) is non-trivially fibered

over the closed string moduli space [11–14]. Open string scalars enter in the definition

of closed string moduli and, as a consequence, both kinds of deformations cannot be

studied independently.

This becomes particularly important when analyzing the dynamics of D-branes within

a closed string background, as required for instance in cosmological models of D-brane

inflation [15–18]. Although the explicit expression for these redefinitions is known in few

examples [11, 19–23], a systematic analysis in the context of D-brane model building is still

missing. It is the purpose of this letter to fill in this gap.

Redefinition of the closed string moduli by the neutral D-brane scalars is related to the

fact that closed string axions shift under some of the diagonal U(1) gauge symmetries of

the D-branes. Similarly, we can expect other charged fields, such as matter fields localized
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at intersections between different stacks of D-branes, to be also redefined by the D-brane

moduli. We will find in section 2 that this is indeed the case.

The structure of this letter is as follows. In section 2, we analyze the transformation

of Yukawa couplings in magnetized brane models under fractional linear transformations

of the complex structure and shifts of the Wilson line moduli. The transformation rules

that we find agree with the ones obtained for twisted fields in heterotic orbifold com-

pactifications [24–28]. In particular, this allows us to identify the N = 1 chiral variables

associated to charged matter fields in presence of arbitrary Wilson lines, in terms of which

the superpotential is an holomorphic function.

Next, we consider the transformation properties of non-perturbative superpotential

couplings induced by Euclidean D-brane instantons.1 In this regard, in section 3 we show

that, after integration over the instanton moduli space, field redefinitions associated to

instanton charged zero modes translate into redefinitions for the closed string Kähler and

axion-dilaton moduli, thus making the full picture consistent.

Finally, we conclude with some last comments in section 4.

2 Modular transformation of matter fields

Our starting point is the Yukawa coupling computation of ref. [7] (see also [30–33]), per-

formed by dimensionally reducing 10d N = 1 super Yang-Mills theory to 4d. Particularly

important for us is the Wilson line dependence of this coupling. This dependence was

determined by identifying the compact manifold with the moduli space of Wilson line de-

formations in the open string wavefunctions. The resulting expressions match the CFT

computation performed in the type IIA side [4], up to global phases that we discuss below.

Hence, we consider N = na + nb + nc D9-branes, with nα ∈ N
+, and magnetization

mα ∈ Z along a single T 2 given by,

Fzz̄ =
πi

Im τ







ma
na

Ina

mb
nb

Inb

mc
nc

Inc






(2.1)

where τ is the complex structure modulus of the torus and Inα are nα×nα identity matrices.

For simplicity, we take g.c.d.(Iab, Ibc, Ica) = g.c.d.(mα, nα) = 1, for each stack α = a, b, c

of D9-branes, so that magnetization breaks the initial U(N) gauge symmetry to U(1) ×
U(1) × U(1). Intersection numbers are defined as

Iαβ ≡ mαnβ − mβnα (2.2)

with αβ = {ab, bc, ca}, and determine the multiplicities of charged chiral multiplets, Φi
αβ,

i = 0 . . . |Iαβ | − 1, transforming in bifundamental representations of U(1) × U(1) × U(1).

Generalization to higher dimensional tori or non-abelian gauge groups is straightforward [7].

1See [29] for some related results in the context of N = 1 type IIB orientifold compactifications with O3

and O7-planes.
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The expression for the physical Yukawa coupling among these charged fields is [4, 7],2

Yijk = g

(

2Im τ

A2

)1/4

NIab
NIbc

NIca

×eifab(ξab,ξ̄ab)+ifbc(ξbc,ξ̄bc)+ifca(ξca,ξ̄ca)

×e
iπ

“

ξabIm ξab
Iab

+
ξbcIm ξbc

Ibc
+ ξcaIm ξca

Ica

”

/Im τ

×ϑ

[

δijk

0

]

(ξ; τ |IabIbcIca|) (2.3)

where g is the 10d gauge coupling constant, A is the area of the 2-torus and NIαβ
encodes

the dependence of the Kähler metric on the intersection numbers. The concrete form of

NIαβ
is not relevant for our purposes. The interested reader, however, can find explicit

expressions in [32, 34–37].

In addition, we are using the notation,

Iαβ ≡ Iαβ

nαnβ
(2.4)

δijk ≡ i

Iab
+

j

Ica
+

k

Ibc
(2.5)

ξαβ ≡ ξα − ξβ (2.6)

ξ ≡ Iabncξc + Ibcnaξa + Icanbξb (2.7)

where ξα,x, ξα,y ∈ [0, 1/nα) are the real Wilson line moduli along the 2-torus and ξα =

−ξα,y + τξα,x. With these conventions the gauge potential associated to Wilson lines is

given by Aα = iπ
Im τ Im(ξαdz̄).

As already mentioned, the CFT and field theory computations of the physical Yukawa

coupling, performed respectively in [4] and [7], leave undetermined an overall pure phase

which depends on the Wilson line moduli. In particular, the results of [4] and [7] differ

in such global phases. We have parameterized these terms in eq. (2.3) by means of the

unknown real functions fαβ(ξαβ, ξ̄αβ). The need of these phases will become more clear

below, when analyzing the transformation properties of the Yukawa coupling under periodic

shifts of the Wilson line moduli.

In order to consider supersymmetric compactifications, we must generalize the above

example to the case where D9-branes are magnetized along three 2-tori, T 2×T 2×T 2. This

can be easily done by taking three copies of eq. (2.3), one for each 2-torus [4, 7]. Moreover,

we shall take sign(I
(r)
ab I

(r)
bc I

(r)
ca ) > 0. The physical Yukawa coupling can be then expressed

in terms of a holomorphic superpotential,

W = Φ̂
~i
abΦ̂

~j
bcΦ̂

~k
ca

3
∏

r=1

ϑ

[

δ
(r)
irjrkr

0

]

(ξr; τr|I(r)
ab I

(r)
bc I(r)

ca |) (2.8)

where the index r refers to the r-th 2-torus (with analogous definitions to (2.4)–(2.7))

and we have taken the following expression for the holomorphic N = 1 chiral variables

2Note that this expression (and therefore eq. (2.9) below) is not exact. In particular, α′ corrections

are expected.
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associated to matter fields,3

Φ̂
~j
αβ = eifαβ

(

W

W

) 1
4





3
∏

r=1

(Im τr)
1
4 e

iπ
ξr
αβ Im ξr

αβ

I
(r)
αβ

Im τr



Φ
~j
αβ (2.9)

The factor (W/W )1/4 has its origin in the particular form of the N = 1 supergravity

lagrangian, as explained in [25]. In order to simplify the notation, we have combined

the unknown phase factors of each of the three copies of (2.3) into a single phase factor,

fαβ ≡∑3
r=1 f r

αβ.

We want to analyze the transformation properties of this superpotential under linear

fractional transformations of the complex structure. We consider, thus, the transforma-

tion τk → τk and τq → −1/τq, for q 6= k and k fixed. This corresponds to T-dualizing

along the four directions transverse to the k-th factor of T 2 × T 2 × T 2. Under this trans-

formation the initial compactification is in general mapped into a different toroidal type

IIB orientifold compactification. In particular, charges of D9-brane/O9-plane in the initial

setup are mapped to charges of D5-brane/O5-plane wrapping the k-th 2-torus in the dual

compactification, and viceversa. Similarly, magnetization in the D9-branes transforms as,

(mk
α, nk

α) → (−mk
α,−nk

α) ,

(mq
α, nq

α) → (−nq
α,mq

α) , q 6= k (2.10)

Let us analyze how the holomorphic variables in eq. (2.9) transform under this duality.

First, note that eq. (2.3) as it stands is invariant under the above transformations.4 From

eqs. (2.8) and (2.9), and making use of Poisson re-summation and the discrete Fourier

transform of the ϑ-function [7], one may check that matter fields transform holomorphi-

cally as

Φ̂
~j
αβ →







∏

q 6=k

e
−

πi(ξ′αβ )2

Iαβτ

√
−iτ






Φ̂′~j

αβ (2.11)

where in the T-dual setup, chiral variables are given in a new basis,

ξ′α = ξα,x + τξα,y (2.12)

Φ̂′~j
αβ =

|I
(r)
αβ |−1
∑

pr=0

|I
(s)
αβ |−1
∑

ps=0







∏

q=r,s

e
2πipj

IβγIγα

Iαβ

√

|Iαβ|






Φ̂~p

αβ

∣

∣

∣

ξαβ→ξ′αβ

(2.13)

with r 6= s 6= k. In order to simplify the notation in these expressions we have omitted the

subindex q in all quantities appearing within the brackets. Notice that, whereas eq. (2.11) is

a holomorphic field-dependent transformation, eq. (2.13) is just a linear change of basis with

constant phases as coefficients, which brings the superpotential back to its original form.

3Here, and in what follows, we neglect factors of A, g or NIab
, as they only play a role for modular

transformations of the Kähler moduli or of the complex-axion dilaton, which we do not consider in this note.
4Actually, one may check that it is also invariant under T-duality along a single 2-torus. For simplicity,

however, here we just consider T-dualizing along two 2-tori.
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Eqs. (2.11)–(2.13) have precisely the same structure than the corresponding ones for

twisted fields in heterotic orbifold compactifications [24–28]. The place of the orbifold twist

in heterotic orbifold compactifications is now taken by the quantity IβγIγα/Iαβ , whereas

the orbifold lattice corresponds in the type II language to the lattice generated by the

intersections k = 0 . . . |Iαβ | − 1. Indeed, the fact that matter fields in type I compactifica-

tions with magnetized branes transform as twisted fields in heterotic compactifications is

not surprising, as they are related by type I/heterotic S-duality.

Similarly, we can also consider the transformation of matter fields under shifts of the

complex structure, τr → τr + 1. This has to be conveniently accompanied by a shift of the

Wilson line moduli [28],

τr → τr + 1 , Re ξr
α → Re ξr

α − Im ξr
α

Im τr
, ∀α (2.14)

From eq. (2.9), we observe that matter fields are invariant under this transformation. In

order the superpotential to be also invariant, however, we have to define a new basis for

the chiral variables, similarly to what we have just seen for the τ → −1/τ transformation.

For I
(r)
ab I

(r)
bc I

(r)
ca even, the new basis for matter fields is given by

Φ̂′~j
αβ = e

−iπj2
IβγIγα

Iαβ Φ̂
~j
αβ (2.15)

where, again, subindices r should be understood in all quantities. This transformation is

in agreement with the result for twisted fields in heterotic orbifold compactifications.5

Finally, let us consider the transformation of matter fields under shifts of the Wilson

line moduli. Due to the periodicity of real Wilson lines, ξr
α,x, ξ

r
α,y ∈ [0, 1/nr

α), the 4d effective

action should be invariant under shifts ξr
α,x(y) → ξr

α,x(y) + 1/nr
α. Indeed, note that both

U(1) gauge transformations in the 4d theory and shifts of the Wilson line moduli have a

common origin in U(1) gauge transformations of the 10d gauge theory in the worldvolume

of D9-branes. Gauge invariance of the 10d action then guarantees invariance of the 4d

theory under shifts of the Wilson line moduli (up to possible change of basis within the

space of degenerate fields).

In general, a shift in a Wilson line modulus induces a gauge transformation for the 4d

fields which are charged under the corresponding U(1). More precisely, after dimensional

reduction, 4d fields are associated with eigenfunctions φ(xr) of the Dirac operator on

the internal torus. Torus translations induce U(1) gauge transformations, φ(xr + 1) →
exp(iqχr)φ(xr), with q the U(1) charge of the field and χr the corresponding Wilson loop.

In the presence of Wilson lines, the eigenfunctions of the Dirac operator are actually φ(xr +

qξxr), where ξxr denotes the Wilson line along the direction xr [7]. Hence, a shift of the

Wilson line modulus induces the same U(1) gauge transformation than the corresponding

torus translation.

5For I
(r)
ab I

(r)
bc I

(r)
ca odd, however, the basis is more involved. In particular, in addition to eq. (2.15), one

may check that ϑ
h

δijk

0

i

is mapped to ϑ
h

δijk

1/2

i

in eq. (2.8). We have not succeeded in explaining this

transformation in terms of a new basis for the matter fields. Similar problems under τ → τ + 1 were

encountered in heterotic orbifold compactifications when the order of the twist was even (see e.g. [27]).
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This symmetry can be also understood in more geometrical terms in the mirror setup

with intersecting D6-branes. In this picture, one of the real Wilson line moduli becomes the

transversal distance of a D6-brane to the origin [4]. The transformation ξr
α,x → ξr

α,x +1/nr
α

then corresponds to move the D6-brane transversally along the r-th 2-torus until it reaches

again the initial locus. Notice, however, that after moving the brane along this path

intersections with other branes are permuted. In order to make explicit the invariance

of the action, one has to apply a change of basis (in this case just a permutation) for

the degenerate charged fields localized at different intersections. To avoid this sort of

subtleties, here instead we choose to shift the modulus an enough number of times such

that the permutation is trivial. This is achieved by,

ξr
α → ξr

α + δr
α (2.16)

or,

ξr
α → ξr

α + δr
ατ (2.17)

with δr
α = l.c.m.(I

(r)
αβ , I

(r)
αγ , . . .)/nr

α, where the numerator represents the lowest common

multiple of the intersection numbers (along the r-th 2-torus) of brane α with all other

branes present in the compactification.

We can easily check that physical Yukawa couplings are invariant under transforma-

tions (2.16) and (2.17) provided that matter fields transform, respectively, as

Φ̂
~i
αβ → Φ̂

~i
αβ , (2.18)

Φ̂
~j
γα → Φ̂

~j
γα , (2.19)

and,

Φ̂
~i
αβ → e

iπδ2ατ

Iαβ
+

2πiξαβδα

Iαβ Φ̂
~i
αβ (2.20)

Φ̂
~j
γα → e

iπδ2ατ

Iγα
−

2πiξγαδα
Iγα Φ̂

~j
γα . (2.21)

where subindices r have been omitted. With the above definition (2.9), this can be only

the case if the phases fαβ, fγα, are non-trivial and transform under (2.16) and (2.17) as,

fαβ → fαβ − πδαIm ξαβ

IαβIm τ
(2.22)

fγα → fγα +
πδαIm ξγα

IγαIm τ
(2.23)

and,

fαβ → fαβ − πδαIm (τ̄ ξαβ)

IαβIm τ
(2.24)

fγα → fγα +
πδαIm (τ̄ ξγα)

IγαIm τ
. (2.25)

Consistently with this, one may verify that eq. (2.3) is invariant under the transforma-

tions (2.16)–(2.17) and (2.22)–(2.25).
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3 Non-perturbative effects

3.1 D-brane instantons

We can extend without much effort the above reasoning to the case of non-perturbative

superpotential couplings generated by D-brane instantons. The latter consist of Euclidean

D1- and D5-branes (also dubbed E1- and E5-brane instantons) wrapping, respectively,

complex compact curves and the full compact space.6 The resulting superpotential cou-

plings can be computed in terms of CFT scattering amplitudes by means of the recently

developed D-brane instanton calculus [38–44].

In general, only N = 1 instantons with a spectrum of neutral zero modes given by

two fermions, θρ, ρ = 1, 2, and four scalars xµ, µ = 0, . . . , 3, parameterizing the N = 1

superspace, contribute to the 4d effective superpotential [38–41]. This requires, among

other things, that instantons wrap rigid cycles, and therefore couple to blow-up modes.7

The structure of instanton generated couplings factorizes into a product of disc am-

plitudes times the contribution of one-loop fluctuations around the instanton background,

given by an exponential of annuli and Möbius amplitudes. In this subsection we consider

stringy instantons with no field theory analogous, i.e. instantons with no charged bosonic

zero modes localized at the intersections with the D-branes present in the compactification.

In that case the one instanton contribution reads [38, 43, 44],

〈Φ̂1
αβ[~x1]Φ̂

2
αβ[~x2] . . .〉 =

∫

d4xd2θ
∑

conf.

|IαEp|−1
∏

j=0

dλj
α

|IEpβ|−1
∏

k=0

dλ̄k
β · µ(ξα, ξβ)

e2πiSEp〈Φ̂1
αβ [~x1]〉λα,λ̄β

· 〈Φ̂2
αβ[~x2]〉λα,λ̄β

· . . .×
× eMEp+

P

s AEpDqs (3.1)

where the sum over configurations extends over all possible ways of distributing the charged

fermionic zero modes, λj
α and λ̄k

β, among the disc correlators, 〈Φ̂r
αβ[~xi]〉λα,λ̄β

.

Each correlator consists of a product of matter fields,

Φ̂r
αβ [~xi] = Φ̂αx1

i
Φ̂x1

i x2
i
. . . Φ̂xnr−1

i xnr
i

Φ̂xnr
i β (3.2)

and two charged zero modes, λα and λ̄β , laying at the Ep−α and β−Ep sectors, respectively.

Notice that, due to the factorization property of higher order couplings, any disc amplitude

〈Φ̂r
αβ [~xi]〉λα,λ̄β

can always be expressed in terms of 3-point disc amplitudes [10]. We have

also introduced a measure µ(ξα, ξβ) over the (charged) moduli space of the instanton. An

explicit expression for this measure will be proposed in [59] based on the invariance of

eq. (3.6) under U(1) gauge transformations and shifts of the Wilson line moduli. This

expression, however, is not relevant for our purposes.

6However, in a given toroidal orbifold compactification in general only one of the two types of branes

contributes to the superpotential.
7Instantons wrapping non-rigid cycles or preserving N ≥ 2 supersymmetry, however, may contribute to

higher F-terms [45–50].
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The last term in eq. (3.1) contains contributions due to one loop fluctuations around the

instanton background, where the sum runs over all D5- and D9-branes in the compactifica-

tion. This term depends on the position and Wilson line moduli of branes which are parallel

to the instanton along some direction (Neumann-Neumann or Dirichlet-Dirichlet boundary

conditions) and which, therefore, develop extra massless fermionic modes at particular loci

of their moduli space, corresponding to the zeroes of exp(MEp +
∑

s AEpDqs) [51].

Finally, SEp is the tree-level part of the instanton action. For E5 or E1 instantons it

is given respectively by,

SE5 = S + M0 , SE1k
= Tk + Mk , k = 1, 2, 3 (3.3)

where Tk is the Kähler modulus of the T 2 wrapped by the E1k instanton, S the complex

axion-dilaton, and MA are linear combinations of complex blow-up moduli with coefficients

depending on the discrete Wilson lines, position and Chan-Paton charge of the instanton.

For T 2 × T 2 × T 2 orientifolds with O9-planes [11, 52, 53],

S = C6 + ig1/2
s

3
∏

r=1

Volr , Tk = C2,k + ig−1/2
s Volk (3.4)

with Volr the volume of the r-th 2-torus (r = 1, 2, 3), gs the string coupling constant

and C6 (C2,k) the component of the RR 6-form (2-form) along the 6d compact space (the

k-th 2-torus).

Let us proceed now to analyze how the holomorphic variables defined in eq. (2.9)

apply in this non-perturbative context. We are interested in closed string moduli redefini-

tons by the Wilson line moduli. To be more precise, consider the contribution of a single

non-magnetized E5-instanton to a superpotential coupling which involves only fields trans-

forming in symmetric or antisymmmetric representations of the gauge group, that is, fields

localized at the intersection between branes α and their images α∗ under the orientfold

projection. We could have considered more general couplings, however, this simple case

is enough to read the holomorphic variables for the closed string moduli. Indeed, taking

β = α∗ and

(mr
α∗ , nr

α∗) = (−mr
α, nr

α) , ξr
α∗ = −ξr

α , r = 1, 2, 3 (3.5)

we see, from eq. (2.3) (or rather, its generalization to the case of a T 2 × T 2 × T 2) and

factorization of the disc amplitudes 〈Φ̂r
αβ [~xi]〉λα,λ̄β

into 3-point amplitudes, that eq. (3.1)

contains a Grassman integral of the form,

e2πi(S+M0)
∏

{α}

e2iIαE5fαE5+2πi
P3

r=1 cr
α

ξr
αE5Im ξr

αE5
Im τr

∫ IαE5−1
∏

j,k=0

dλj
αdλ̄k

α∗ λj
αλ̄k

α∗ µ(ξα) · . . . ·
∏

{α̃}

e2πi
P3

r=1 cr
α̃

ξr
α̃E5Im ξr

α̃E5
Im τr (3.6)

where, without lost of generality, we have taken IαE5 > 0. Here, the coefficients cr
α corre-

spond to the RR charges of D5-brane which are induced in the worldvolume of D9-brane

– 8 –
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α by the magnetization,

cr
α = nr

αmj
αmk

α , r 6= j 6= k = 1, 2, 3 (3.7)

The dots denote a holomorphic modular form of weight −1 with respect to the SL(2, Z)3

modular group of fractional linear transformations of the complex structure moduli τr,

r = 1, 2, 3. Finally, the last term in eq. (3.6) corresponds to contributions of one-loop

fluctuations, given by the last term of eq. (3.1). The absolute value of these contributions

is related to the Green function of the Laplacian on the torus [21, 23, 54, 55],

G(ξab, ξ̄ab) = −log

∣

∣

∣

∣

∣

∣

∣

∣

e
iπξabIm ξab

Im τ

ϑ

[

1
2
1
2

]

(ξab; τ)

η(τ)

∣

∣

∣

∣

∣

∣

∣

∣

2

(3.8)

with η(τ) the Dedekind η-function. Hence, the product over α̃ contains the contribution

of non-magnetized D5-branes wrapping the r-th T 2, with Wilson line modulus ξr
D5r

, and

D9-branes with magnetization only along a T 2 × T 2 submanifold.

Similarly to what occurs for perturbative superpotential couplings, the non-

holomorphic exponential prefactors in eq. (3.6) are absorbed into redefinitions of the holo-

morphic N = 1 variables. In the case at hand, however, instanton charged zero modes are

not physical. Euclidean brane instantons do not span the 4d space-time dimensions and

therefore the lagrangian does not contain kinetic terms for the fields λj
α, λ̄k

β, which do not

propagate. The exponential prefactors cannot be therefore absorbed into redefinitions of

these fields, but rather of the closed string moduli in SEp.

Considering exponential prefactors which are independent of the discrete Wilson lines

of the instanton, ξr
E5, and combining disc and one-loop contributions, we find the following

definition for the holomorphic N = 1 chiral variable associated to the axion-dilaton,

Ŝ = S +
∑

{α̂}

3
∑

r=1

cr
α̂

ξr
α̂Im ξr

α̂

Im τr
(3.9)

where {α̂} now denotes all branes in the model, magnetized and non-magnetized.

Notice that Ŝ does not transform holomorphically under shifts of the Wilson line

moduli, eqs. (2.16)–(2.17), unless the RR 6-form which appears in the definition of S

transforms also. Let us show that this is indeed the case. For that aim, consider the

following piece of the ten dimensional supergravity action,

∫

[Tr(F2 ∧ F2 ∧ F2 ∧ A) ∧ F3 + F7 ∧ F3] (3.10)

with F3 and F7 the RR 3-form and 7-form field strengths (F7 = ∗F3), respectively. Inte-
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grating over the internal 6-torus, and keeping track of the Wilson line moduli, we obtain

the following couplings in the 4d effective action,

1

6

∫

dx4 ǫµνρσFνρσ

[

Re(∂µS) +
∑

α

(

m1
αm2

αm3
αAα

µ +

3
∑

r=1

cr
α

Im[ξ̄r
α∂µξr

α]

Im τr

)]

(3.11)

where ǫµνρσ is the 4d antisymmetric tensor.

The first term in the second line of (3.11) is the one responsible for the standard Green-

Schwarz mechanism (see e.g. [56]). In order to cancel the anomalous transformation of this

term under U(1) gauge transformations of the 4d theory, a shift of Re S proportional to

m1
αm2

αm3
α is required. In presence of continuous Wilson lines in the compact space we see

that an extra term arises. This extra term is indeed the responsible for the transformation

of the RR 6-form potential under shifts of the Wilson line moduli,

ξr
α → ξr

α + δα
r : S → S − cr

α

δr
αIm ξr

α

Im τr
(3.12)

ξr
α → ξr

α + δα
r τr : S → S − cr

α

δr
αIm (ξr

ατ̄r)

Im τr
(3.13)

This also matches the discussion in previous section, where we argued that shifts of the

Wilson line modulus have an analogous effect than U(1) gauge transformations in the 4d

theory, due to their common origin in U(1) gauge transformations of the 10d theory. The

analogy, however, has to be taken with some care. Whereas the “charge” of the closed

string axion under a 4d U(1) gauge transformation is proportional to the charge of D3/D3-

brane induced by the magnetization, the “charge” under shifts of the Wilson line moduli is

proportional to the induced D5-brane charges. Thus, there are situations where the axion

does not transform under 4d U(1) gauge transformations but it does transform under shifts

of the Wilson line modulus. We will see in next section a particular example of this type.

Taking into account (3.12) and (3.13), now it is straightforward to verify that Ŝ indeed

transforms holomorphically under eq. (2.16) and (2.17), providing a good consistency check

of eq. (3.9).

Regarding the exponential terms in eq. (3.6) which depend on both the discrete param-

eters of the instanton and the Wilson line moduli of the D9-brane, we will argue in [59] that

they must be canceled with the measure over the charged moduli space of the instanton,

µ(ξα), in order eq. (3.6) to be invariant under U(1) gauge transformations and shifts of the

Wilson line moduli. Note that terms depending on the instanton parameters cannot be in

any case associated to perturbative redefinitions of fields.

Finally, let us briefly comment on the redefinition of Kähler moduli. The simplest way

to obtain these redefinitions is to T-dualize eq. (3.9) along the directions transverse to the

k-th factor of T 2 × T 2 × T 2. Under this transformation, τj → −1/τj , for j 6= k = 1, 2, 3,

and magnetization numbers transform as in eqs. (2.10), as we already saw in the previous

– 10 –
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section.8 Moreover, S → Tk. We reproduce here the resulting expression,

T̂k = Tk −
∑

{α̂}



c0
α̂

ξk
α̂Im ξk

α̂

Im τk
−

3
∑

p 6=q 6=k

cq
α̂

ξp
α̂Im ξp

α̂

Im τp



 (3.14)

where,

c0
α ≡ n1

αn2
αn3

α (3.15)

Under shifts (3.12) and (3.13) of the Wilson line moduli, the complex scalars Tk transform

respectively as,

ξr
α → ξr

α + δα
r : Tk → Tk + ck,r

α

δr
αIm ξr

α

Im τr
(3.16)

ξr
α → ξr

α + δα
r τr : Tk → Tk + ck,r

α

δr
αIm (ξr

ατ̄r)

Im τr
, (3.17)

where ck,r
α = c0

α for r = k, and ck,r
α = −cp

α for r 6= k 6= p.

3.2 Gaugino condensation

We have seen how to extract from superpotential couplings generated by stringy instantons

the holomorphic variables associated to closed string moduli in the presence of magnetized

D-branes and continuous Wilson lines. Similar statements hold for non-perturbative super-

potentials originating from field theory instantons or gaugino condensation (equivalently,

fractional gauge instantons [60]) in the worldvolume of some D-brane.

In what follows, we illustrate the application of these techniques to the T 4/Z2 × T 2

BSGP orbifold model [57, 58], consisting of 16 non-magnetized D9-branes and 16 D5-

branes. Strictly speaking, this model does not contain complex rigid cycles, and therefore

non-perturbative superpotentials are not generated. However, in the same spirit than [21],

we assume that extra ingredients in the compactification lead to complex rigid cycles at

the singularities of the Z2-orbifold and, in particular, to O(1) instantons contributing to

the superpotential [8]. Alternatively, we could think of this model as one of the N = 2

subsectors of a T 6/Z2 × Z2 orbifold with discrete torsion [61–64].

Hence, we assume that E1-instantons stuck at the singularities of the Z2 orbifold and

wrapping the transverse T 2 in T 4/Z2 × T 2 induce non-perturbative superpotential terms.

In particular, we consider D5-branes to be fractional, so that they are stuck also at the

singularities. In that case E1-instantons at the singularities correspond to fractional gauge

instantons (or gaugino condensates) for the gauge theory living in the worldvolume of the

D5-branes.

According to the discussion in previous sections, in this case there is some dependence

of the non-perturbative superpotential on the Wilson line moduli of the D9-branes along

8The transformation rules for the magnetization numbers are actually not unique. Acting with a gen-

erator of Z2 × Z2, where each Z2 reverses the magnetization numbers of a T 2 × T 2, leads to another set of

valid transformations. The resulting E1-instantons differ in their Chan-Paton charge. Consistently, all of

these T-duality transformations lead to the same expression for the redefined Kähler moduli.
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the T 2. We can make use of the Green function for the Laplace operator in the T 2, eq. (3.8),

to compute the explicit expression of this superpotential [21, 23],9

W =
∑

ξE1

e
2πi

σ(ξE1)
(T+M(ξE1))

η(τ)
−

8+σ(ξE1)

σ(ξE1) ×

16
∏

a=1

(

e
iπ(ξa−ξE1)Im(ξa−ξE1)

Im τ ϑ

[

1
2
1
2

]

(ξa − ξE1; τ)

e
iπ(ξa+ξE1)Im(ξa+ξE1)

Im τ ϑ

[

1
2
1
2

]

(ξa + ξE1; τ)

)
1

4σ(ξE1)

(3.18)

The sum in this expression extends over the discrete lattice of the Z2, spanned by the

discrete Wilson line parameter of the E1-instanton,

ξE1 = −ǫ2 + τǫ1 , ǫi = 0, 1/2 (3.19)

The particular linear combination of blow-up moduli to which the instanton couples, here

represented by M(ξE1), depends on ξE1. The Kähler modulus and the complex structure

modulus of the T 2 are given, respectively, by T and τ , whereas ξa is the corresponding

Wilson line of the a-th D9-brane along this torus. The fractional charge of the instanton

corresponds to the dual Coxeter number of the condensing gauge group σ(ξE1), which is

related to the β-function coefficient of the gauge theory in the worldvolume of the D5-branes

at the singularity where the instanton sits.

Under shifts of ξa, the complex scalar T transforms as,

ξa → ξa + 1 , T → T − 1

4

Im ξa

Im τ
(3.20)

ξa → ξa + τ , T → T − 1

4

Im(τ̄ ξa)

Im τ
(3.21)

Note that in this case the Green-Schwarz mechanism does not induce shifts of T under

U(1) gauge transformations (m1m2m3 = 0), however, D9-branes in this model carry some

charge of fractional D5-brane, leading to (3.20)–(3.21).10

We can write the global superpotential eq. (3.18) in terms of holomorphic variables,

following the discussion in previous sections. More precisely, making use of the periodicity

formula of the theta function, we express (3.18) as,

W =
∑

ǫi=0, 1
2

η(τ)
−

8+σ(ξE1)

σ(ξE1) e
2πi

σ(ξE1)
(T̂+M) × e

− 8πi
σ(ξE1)

(ǫ2+ǫ1ǫ2)
16
∏

a=1

ϑ

[

1
2 + ǫ1

1
2 + ǫ2

] 1
2σ(ξE1)

(ξa; τ)

(3.22)

9This superpotential (and its holomorphic expression, eq. (3.22)) differs from the ones presented in [21,

23] in that it contains additional terms of the form exp(2πiξE1Im ξE1/Im τ ) which arise from eq. (3.8). One

may check that without these terms the superpotential would not transform as a modular form of weight

-1 under τ → −1/τ . These terms will lead to relative phases between various instanton contributions in

eq. (3.22).
10This is also consistent with the mixing between S and T in the gauge kinetic function of D9-branes for

this model found in [66].
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where we have redefined the Kähler modulus [11],

T̂ = T +
1

4

16
∑

a=1

ξaIm ξa

Im τ
(3.23)

Notice that blow-up moduli are not redefined in eq. (3.22). This is due to the symmetriza-

tion of (3.18) under the orientifold action. In addition, notice that without (3.20)–(3.21),

eq. (3.23) would transform non-holomorphically.

In these holomorphic variables the superpotential takes a form which resembles much

the expression of a superstring partition function. This is not surprising, since worldsheet

instantons are related by S-duality to E1-instantons.11

One may check that eq. (3.22) satisfies all the required global consistency conditions.

Indeed, given the Kähler potential,

K = −log

[

(T̂ − ¯̂
T )(τ − τ̄ ) − 1

4

16
∑

a=1

(ξa − ξ̄a)
2

]

(3.24)

the resulting scalar potential is not only invariant under the transformations (3.20)–(3.21),

but also under τ → −1/τ and τ → τ + 1, providing a good consistency check of these

global expressions.

4 Discussion

We have analyzed the transformation properties of perturbative Yukawa couplings in mod-

els with magnetized D9-branes under the action of the target-space modular group. More

precisely, we have considered linear fractional transformations of the complex structure

moduli and shifts of the Wilson line moduli of magnetized D9-branes. This analysis per-

mitted us to identify the right definitions for the holomorphic N = 1 variables associated

to matter fields and, using techniques of D-brane instanton calculus, the holomorphic vari-

ables for closed string moduli. Our main results can be summarized by eqs. (2.9), (3.9)

and (3.14).

The precise knowledge of these variables is required in any global analysis of the D-

brane dynamics within a toroidal compactification [59]. This is especially relevant for D-

brane inflationary models, where inflation is driven by one or several open string moduli.

In particular, in [59] we will make use of these results to analyze the non-perturbative

dynamics of D-branes in T 6/Z2 × Z2 orbifold models with discrete torsion.

There are several interesting aspects on which the results of this letter could be ex-

tended. The redefinitions we give here are valid for toroidal (or toroidal orbifold) models.

It should be possible, however, to generalize these expressions and express them in terms

of quantities which are well defined in arbitrary Calabi-Yau compactifications. We may

also think that further ingredients such as closed string fluxes could also affect the redefi-

nition of closed string moduli. In this regard, the effect of closed string fluxes on the open

11Indeed, the S-duality map can be explicitly used in this model to compute E1-instanton corrections to

the effective action [65, 66].
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string wavefunctions has been analyzed recently [67], reflecting that the wavefunctions of

the lightest modes associated to matter fields (in the regime where supergravity is a valid

description) do not feel the effect of the closed string background flux. Based on this,

therefore, we do not expect the redefinitions discussed here to be altered by the presence

of closed string fluxes in a globally consistent model.
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[1] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String

Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1

[hep-th/0610327] [SPIRES].

[2] F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491

[hep-th/0702094] [SPIRES].

[3] F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [SPIRES].
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[21] M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string

theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [SPIRES].

[22] H. Jockers and J. Louis, The effective action of D7-branes in N = 1 Calabi-Yau orientifolds,

Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [SPIRES].

[23] D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped

D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [SPIRES].

[24] J. Lauer, J. Mas and H.P. Nilles, Duality and the role of nonperturbative effects on the world

sheet, Phys. Lett. B 226 (1989) 251 [SPIRES].
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