505 research outputs found

    Thermal conductivity and flash temperature

    Get PDF
    The thermal conductivity is a key property in determining the friction-induced temperature rise on the surface of sliding components. In this study, a Frequency Domain Thermoreflectance (FDTR) method is used to measure the thermal conductivity of a range of tribological materials (AISI 52100 bearing steel, silicon nitride, sapphire, tungsten carbide and zirconia). The FDTR technique is validated by comparing measurements of pure germanium and silicon with well-known values, showing discrepancies of less than 3%. For most of the tribological materials studied, the thermal conductivity values measured are reasonably consistent with values found in the literature. However the measured thermal conductivity of AISI 52100 steel (21 W/mK) is less than half the value cited in the literature (46 W/mK). Further bulk thermal conductivity measurements show that this discrepancy arises from a reduction in thermal conductivity of AISI 52100 due to through-hardening. The thermal conductivity value generally cited and used in the literature represents that of soft, annealed alloy, but through-hardened AISI 52100, which is generally employed in rolling bearings and for lubricant testing, appears to have a much lower thermal conductivity. This difference has a large effect on estimates of flash temperature and example calculations show that it increases the resulting surface temperatures by 30 to 50%. The revised value of thermal conductivity of bearing steel also has implications concerning heat transfer in transmissions

    Effect of base oil structure on elastohydrodynamic friction

    Get PDF
    The EHD friction properties of a wide range of base fluids have been measured and compared in mixed sliding–rolling conditions at three temperatures and two pressures. The use of tungsten carbide ball and disc specimens enabled high mean contact pressures of 1.5 and 2.0 GPa to be obtained, comparable to those present in many rolling bearings. The measurements confirm the importance of molecular structure of the base fluid in determining EHD friction. Liquids having linear-shaped molecules with flexible bonds give considerably lower friction than liquids based on molecules with bulky side groups or rings. EHD friction also increases with viscosity for liquids having similar molecular structures. Using pure ester fluids, it is shown that quite small differences in molecular structure can have considerable effects on EHD friction. The importance of temperature rise in reducing EHD friction at slide–roll ratios above about 5% has been shown. By measuring EHD friction at several temperatures and pressures as well as EHD film thickness, approximate corrections to measured EHD friction data have been made to obtain isothermal shear stress and thus EHD friction curves. These show that under the conditions tested most low molecular weight base fluids do not reach a limiting friction coefficient and thus shear stress. However, two high traction base fluids appear to reach limiting values, while three linear polymeric base fluids may also do so. Constants of best fit to a linear/logarithmic isothermal shear stress/strain rate relationship have been provided to enable reconstruction of isothermal EHD friction behaviour for most of the fluids tested

    The development and application of a scuffing test based on contra-rotation

    Get PDF
    Scuffing is a surface failure mode that occurs in sliding–rolling contacts subjected to high loads and high sliding speeds, such as those in gears and cam-followers. Owing to its sudden onset, rapid progression and dependence on both fluid and boundary lubricant films, scuffing is difficult to study in a repeatable manner. This paper describes further development of a recently proposed scuffing test method based on contra-rotation, its extension to higher loads using a new experimental set-up and its application to study the onset of scuffing with a selection of model and fully-formulated oils. The method employs two surfaces moving in opposite directions under rolling–sliding conditions, with a fixed load and step-wise increasing sliding speed. By decoupling the entrainment and sliding speeds, the method allows the effects of lubricant formulation on scuffing performance to be isolated from the influence of viscosity. The approach achieves high sliding speeds in parallel with low entrainment speeds, while minimising the undesirable effects of surface wear and frictional heating. The proposed test is relatively fast and economical, with total test time of about 30 min including specimen cleaning and set-up. Results show that the newly implemented modifications have improved the repeatability of the test method, so that the number of repeat tests required for reliable oil ranking results is minimal. Tests with model and fully-formulated oils show that the onset of scuffing is characterised by a sharp and unrecoverable increase in friction and accompanied by the destruction of any boundary films. All tests show that the relationship load × speedn = constant holds at scuffing, with the exact value of the exponent n being dependent on the oil formulation. Additivised oils were shown to have enhanced scuffing resistance, which arises from their ability to postpone the uncontrollable rise in friction to higher sliding speeds. Finally, the critical maximum contact temperature scuffing criterion was shown to predict the onset of scuffing in our tests better than the frictional power intensity criterion

    Load carrying capacity of a heterogeneous surface bearing

    Get PDF
    It has been shown before that liquids can slip at a solid boundary, which prompted the idea that parallel-surfaces bearings can be achieved just by alternating slip and non-slip regions in the direction of fluid flow. The amount of slip at the wall depends on the surface tension at the liquid–solid interface, which in turn depends on the chemical state of the surface and its roughness. In the present study a heterogeneous surface was obtained by coating half of a circular glass disc with a coating repellant to glycerol. A rotating glass disc was placed at a known/calibrated distance and the gap was filled with glycerol. With the mobile surface moving from the direction of slip to non-slip region it can be theoretically shown that a pressure build up can be achieved. The pressure gradient in the two regions is constant, similar to that in a Rayleigh step bearing, with the maximum pressure at the separation line. The heterogeneous disc was placed on a holder supported by a load cell thus the force generated by this pressure increase can be measured accurately. Tests were carried out at different sliding speeds and gaps and the load carried was measured and subsequently compared with theoretical calculations. This allowed the slip coefficient to be evaluated

    Electrode Reactions of Isolated Chloroplast Fragments

    Full text link

    The behaviour of lubricated EHD contacts subjected to vibrations

    Get PDF
    Machine components containing contacts working in elastohydrodynamic (EHD) conditions are often subjected to vibrations. These may be originated from the mechanism or machine the contact is part of, the surrounding environment and within the contact itself. The influence of vibrations upon the behaviour of elastohydrodynamic films has been studied experimentally in a number of papers, but a comprehensive study of the effect of the parameters of the oscillatory motion upon the film thickness has not been carried out yet. In this study the authors evaluate the effect of the frequency of the oscillatory motion upon the EHD film thickness. Optical interferometry is used to measure lubricant film thickness in a ball-on-flat disc arrangement. A high – speed camera records the interferometric images for later analysis and conversion into film thickness maps. The disc runs at a constant angular velocity while the ball is driven by the traction forces developed in the EHD film. In steady state conditions, this would ensure pure rolling conditions, however in the present investigation the ball is subjected to harmonic vibrations in a direction perpendicular to the plane of the film. The contact under study is lubricated by basic oils and the temperature is kept at a constant value of 60°C. The aim of this paper is to understand how vibrations influence the lubricant film formation

    Tribological performance of novel Nickel-based composite coatings with lubricant particles

    Get PDF
    Abstract The present study is focused on the evaluation of the tribological performance of novel Ni/hBN and Ni/WS2 composite coatings electrodeposited from an additive-free Watts bath with the assistance of ultrasound. Lubricated and non-lubricated scratch tests were performed on both novel composite coatings and on standard Ni deposits used as a benchmark coating to have an initial idea of the effect of the presence of particles within the Ni matrix. Under lubricated conditions, the performance of the Ni/hBN composite coating was very similar to the benchmark Ni coating, whereas the Ni/WS2 behaved quite differently, as the latter did not only show a lower coefficient of friction, but also prevented the occurrence of stick-slip motion that was clearly observed in the other coatings. Under non-lubricated conditions, whereas the tribological performance of the Ni/hBN composite coating was again very similar to that of the benchmark Ni coating, the Ni/WS2 composite coatings again showed a remarkable enhancement, as the incorporation of the WS2 particles into the Ni coating not only resulted in a lower coefficient of friction, but also in the prevention of coating failure
    • …
    corecore